Hierarchical Property Set Merging for SPARQL Query Optimization
In Proceedings of the 22nd International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data co-located with EDBT/ICDT 2020 Joint Conference, Copenhagen, Denmark, March 30, 2020 (Best Paper award)
2020
Conference/Workshop
- Contact persons: Marios Meimaris , George Papastefanatos , Panos Vassiliadis
- Relevant research project: MEDA.2
Abstract.
Characteristic sets (CS) organize RDF triples based on the set of properties associated with their subject nodes. This concept was recently used in indexing techniques, as it can capture the implicit schema of RDF data. While most CS-based approaches yield significant improvements in space and query performance, they fail to perform well when answering complex query work- loads in the presence of schema heterogeneity, i.e., when the number of CSs becomes very large, resulting in a highly partitioned data organization. In this paper, we address this problem by introducing a novel technique, for merging CSs based on their hierarchical structure. Our method employs a lattice to capture the hierarchical relationships between CSs, identifies dense CSs and merges dense CSs with their ancestors, thus reducing the size of the CSs as well as the links between them. We implemented our algorithm on top of a relational backbone, where each merged CS is stored in a relational table, and we performed an extensive experimental study to evaluate the performance and impact of merging to the storage and querying of RDF datasets, indicating significant improvements