
Spatio-Temporal Keyword Queries for Moving Objects

Paras Mehta
Databases and Information

Systems Group
Freie Universität Berlin
paras.mehta@fu-

berlin.de

Dimitrios Skoutas
Institute for the Management

of Information Systems
R.C. ATHENA

dskoutas@imis.athena-
innovation.gr

Agnès Voisard
Databases and Information

Systems Group
Freie Universität Berlin and

Fraunhofer FOKUS
agnes.voisard@fu-

berlin.de

ABSTRACT
Many applications involve queries that combine spatial, tem-
poral and textual filters. In this paper, we address the prob-
lem of efficient evaluation of queries that perform spatial,
temporal and keyword-based filtering on historical move-
ment data of objects which are additionally associated with
textual information in the form of keywords. Our work com-
bines and builds upon concepts and techniques for spatio-
temporal and spatio-textual queries, proposing two hybrid
indexes for this purpose. An experimental evaluation of the
proposed approaches is presented, using real-world datasets
from two different types of sources.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms, Experimentation

Keywords
moving objects, spatio-textual search, spatio-temporal search

1. INTRODUCTION
With the increasingly widespread use of GPS and mobile

devices it has become possible to track the movement of var-
ious types of objects, ranging from ships, airplanes and ve-
hicles to animals and people. Storing, querying and analyz-
ing such movement data is becoming increasingly interest-
ing and important for many applications, including location-
based services, fleet management, emergency response and
others. Moreover, users in social networks generate large
amounts of content that encompasses spatial, temporal and
textual information. A typical example is a traveler who up-
loads geotagged photos on Flickr or posts geotagged tweets
while moving around in a city. This results in a “trail” of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGSPATIAL’15 November 03-06, 2015, Bellevue, WA, USA
Copyright 2015 ACM 978-1-4503-3967-4/15/11...$15.00
DOI: http://dx.doi.org/10.1145/2820783.2820845.

photos or tweets, each one being characterized by a location,
a timestamp and a set of tags or keywords.

Although there exists an extensive amount of work both
on spatio-temporal queries [7, 9] and spatio-textual queries
[2], the problem of efficiently evaluating queries that com-
bine all the three dimensions, spatial, temporal and textual,
remains largely unexplored [5, 8, 4]. In this paper, we ad-
dress this problem, focusing on historical movement data of
objects which are additionally associated with textual in-
formation in the form of keywords, potentially changing at
each timestamp and location.

In particular, we propose two hybrid indexes that combine
and build upon concepts and techniques for spatio-temporal
and spatio-textual search. The first one, denoted as GKR

(Grid and KR*-tree), is based on a spatio-temporal index
(SETI [1]) used for indexing trajectories of moving objects,
and enhances it to incorporate the keyword information as-
sociated with the trajectory segments. The second, denoted
as IFST (Inverted File with Spatio-Temporal order), is based
on a spatio-textual index (SFC-QUAD [3]), enhancing it to in-
corporate the temporal dimension.

These indexes allow to (a) extend spatio-temporal queries
to moving objects that are associated with textual informa-
tion, and (b) extend spatio-textual queries to moving instead
of static objects. To compare the performance of the two
approaches, we conduct an experimental evaluation using
two different real-world datasets, including yacht movement
tracking data and geotagged images from Flickr.

2. PRELIMINARIES
Spatio-temporal indexes. A comprehensive survey of
spatio-temporal access methods can be found in [9]. Exist-
ing indexes are categorized according to whether they index
past, current or future positions of moving objects (or com-
bining all three). In our work, we focus on the first category,
namely, indexing the past positions of moving objects. For
instance, SETI [1], which forms the basis of the GKR index
proposed here, employs a two-level index structure to han-
dle the spatial and the temporal dimensions. The spatial
dimension is partitioned into static, non-overlapping parti-
tions. Then, for each partition, a sparse index is built on
the temporal dimension. Furthermore, an in-memory struc-
ture is used to speed up insertions. Queries are evaluated by
first performing spatial filtering and then temporal filtering.
Query execution concludes with a refinement step, to filter
out candidates, and a duplicate elimination step, to filter
out segments that belong to the same trajectory.

Spatio-textual indexes. A comprehensive survey and
comparison of proposed indexes for spatio-textual queries
can be found in [2]. These indexes are usually hybrid struc-
tures comprising a spatial indexing part and a text indexing
part. The former is typically based on an R-tree, grid or
space filling curve, while the latter can be an inverted file
or a bitmap. Further, two main query processing strategies
can be distinguished, textual-first and spatial-first [3]. For
instance, in the former case, the top-level index can be an
inverted file with each postings list indexed by an R-tree,
while in the latter case, the top-level index can be an R-tree
with inverted files attached to each leaf node. SFC-QUAD,
on which our second hybrid index is based, employs a space
filling curve and a quad-tree structure [3].

3. PROBLEM DEFINITION
Let O be a set of moving objects associated with a set
T of trajectories. Each trajectory T ∈ T belongs to an
object o ∈ O and comprises a series of line segments, i.e.
T = (o, 〈`1, `2, . . . , `n〉). Each line segment is defined by
a tuple ` = (ps, pe, ψ), where ps = (xs, ys, ts) and pe =
(xe, ye, te) are its start and end points, respectively, specified
by a location and a timestamp, and ψ = {k1, k2, . . . , km} is
a set containing zero or more keywords associated with this
part of the trajectory. We use the notation `.loc, `.τ and
`.ψ to refer, respectively, to the location, the timespan and
the set of keywords of the trajectory segment `.

We define the Spatio-Temporal Keyword (STK) query as
a boolean range query that comprises a spatial, a tempo-
ral and a keyword filter, i.e. Q = (R, T,Ψ), where R =
[(xs, ys), (xe, ye)] specifies a spatial range, T = [ts, te] a time
interval, and Ψ = {k1, k2, . . . , kn} a set of keywords.

Definition 1 (STK query). Given a set of objects O
and their trajectories T , the STK query Q = (R, T,Ψ) returns
a set of objects O ⊆ O such that each o ∈ O contains a
set of trajectory segments To,q ⊆ To that satisfy all of the
following conditions: (a) ∀` ∈ To,q : `.loc ∩ R 6= ∅, (b)

∀` ∈ To,q : `.τ ∩ T 6= ∅, and (c)
⋃

`∈To,q

`.ψ ⊇ Ψ.

4. THE GKR INDEX
GKR is a hybrid structure that combines concepts from the

SETI index [1], for indexing trajectories of moving objects,
and the KR*-tree [6], for indexing spatio-textual objects.
GKR uses a grid to partition the space into a number of

equally sized disjoint cells. Each cell indexes the trajectory
segments that lie within it. Segments that cross multiple
cells are split, so that each new segment is fully contained
within a single cell. These segments are then stored in one
or more disk pages, such that each disk page only contains
segments belonging to the same cell. This part is similar
to SETI, which also partitions the space into disjoint cells
and stores their contents in separate disk pages. However,
since SETI only deals with spatiotemporal data, each created
disk page is only associated with a timespan, which is the
union of the timespans of the segments stored in it. Then,
the timespans of all pages belonging to the same cell are
organized in a one-dimensional R*-tree.

Instead, in our case, each segment contained in a cell is
characterized by both its timespan and the list of keywords
associated with it. To deal with both dimensions, we orga-
nize the corresponding disk pages of a cell using a KR*-tree.

Now, besides its timespan, each disk page is associated with
a set of keywords, which is the union of the sets of keywords
associated with its segments. The KR*-tree is an augmented
R*-tree that additionally associates nodes with keywords.
Thus, the disk pages are again organized in an R*-tree ac-
cording to their timespans, but in addition a structure is
maintained associating tree nodes with keywords contained
in the corresponding disk pages.

Since the GKR index combines and adapts parts from SETI

and KR*-tree, the insert and update procedures also fol-
low steps similar to the corresponding ones for those in-
dexes. Specifically, inserting a new trajectory segment ` is
performed following the steps described below.

1. Identify the grid cells that ` crosses. If there are more
than one such cells, split ` into multiple segments.

2. Identify the disk page(s) associated with that partic-
ular cell. In these pages, the segments are ordered
chronologically, according to the timestamp of their
endpoint. Thus, traverse the KR*-tree associated with
the cell to find the page in which the new segment
should be inserted.

3. If such a page exists and is not full, insert the new seg-
ment. Otherwise, shift the contents of the subsequent
pages or create a new page.

4. Update the timespan and the keyword set of the af-
fected page(s), as well as the KR*-tree.

We assume that in practice the GKR index is constructed in
bulk mode, inserting trajectory segments in chronological
order. Hence, each new segment is appended at the end of
the last disk page of the corresponding cell (or in a new disk
page, if the last one is full).

Next, we describe the steps for evaluating an STK query
Q = (R, T,Ψ) using the GKR index.

1. Select all candidate grid cells that overlap with R.

2. For each candidate cell, traverse the corresponding
KR*-tree to identify those nodes that: (a) have a times-
pan that overlaps with T , and (b) have a keyword that
is contained in Ψ.

3. From the leaf nodes reached, retrieve the set of candi-
date disk pages. These pages provide a set of candidate
trajectory segments that potentially satisfy predicates
R and T and contain one or more keywords from Ψ.

4. Apply a first filtering step as a refinement w.r.t. the
spatial and temporal dimensions: discard segments
that are false positives, i.e. are located outside R or
have their timespans outside T . This results in a set of
candidate objects, which are the objects to which the
remaining segments belong.

5. Apply a second filtering step to discard those objects
whose trajectory segments from Step 4 do not fully
cover the set of query keywords Ψ.

5. THE IFST INDEX
IFST comprises two main structures. The first is a global

inverted file, containing, for each keyword, an inverted list
with the ids of the trajectory segments that contain it. When
a query is evaluated, only segments appearing in the inverted
lists associated with keywords contained in the query need
to be examined. Since these lists can still be quite long,
the key issue for efficiency is to restrict the portions of each
list that may contain segments satisfying the spatial and

temporal predicates of the query. This is achieved by as-
signing ids to segments in a spatio-temporal order. For this
purpose, a second, hybrid structure is maintained, which
comprises in turn two parts. The first is a quadtree that
indexes trajectory segments according to the spatial dimen-
sion. This allows for ordering cells, and their corresponding
trajectory segments, according to a Z curve, so that seg-
ments that are spatially close together will also have similar
ids. Furthermore, segments belonging to the same cell are
assigned ids chronologically, according to the end timestamp
of each segment. Then, for each leaf node of the quadtree,
an R*-tree is built to index the timespans of the contained
segments. Lastly, the inverted lists are themselves split into
blocks (with size that is typically a multiple of 128 bytes)
and are compressed using a block compression algorithm be-
fore being stored on disk.

The following steps describe how the IFST index is con-
structed.

1. Construct a quadtree to partition the space and as-
sign ids to cells according to the Z-order. Each trajec-
tory segment is assigned to the corresponding cell; if
it spans more than one cells, it is split.

2. Assign ids to segments according to the position of
their parent cell in the Z-ordered quadtree and their
position in the chronological order of segments within
the cell.

3. For each cell, construct an R*-tree to index the times-
pans of the contained segments.

4. Construct an inverted file to index segments according
to their keywords, using the ids assigned previously
based on the spatial and temporal ordering.

The steps for evaluating an STK query Q = (R, T,Ψ) using
the IFST index are described below.

1. The quadtree is traversed to find the leaf nodes that
overlap with the spatial predicate R.

2. For each leaf node, the traversal continues using the
associated R*-tree to identify subsets of the contained
segments that also have a timespan overlapping with
T . The result is a list of segment ids, which are merged
into a smaller set of k disk sweeps.

3. The inverted index is used to identify the posting lists
for the keywords contained in Ψ. The compressed
blocks corresponding to the segment ids are read from
disk in k disk sweeps and are decompressed. The result
is a set of candidate trajectory segments that poten-
tially overlap with R and T and contain at least one
of the keywords in Ψ. Then, as with GKR, two filtering
steps are applied to obtain the result.

4. In the first filtering step, using document-at-a-time
(DAAT) processing on the set of segment ids from the
R*-trees and the set from the inverted index, the seg-
ments that are located outside R or that have their
timespan outside T are discarded. This results in a set
of candidate objects.

5. In the second filtering step, it is checked for each re-
maining object whether its segments from Step 4 fully
cover the set of query keywords Ψ.

6. EXPERIMENTAL EVALUATION
Datasets. We performed an experimental evaluation using
two different types of datasets. The first comprises yacht
movement tracking data collected over a period of four weeks

Dataset Size Objects Points Keywords

Yachts 26 MB 1,496 215,937 51,542
Flickr 195 MB 46,016 1,000,000 482,561

Table 1: Datasets used in the experiments.

Yachts Flickr

R(km2) [50K, 250K, 500K, 750K, 1M] [1K, 5K, 10K, 15K, 20K]
T (hrs) [6, 9, 12, 18, 24] [2, 4, 6, 9, 12]
|Ψ| [1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

Table 2: Parameters used in the experiments.

from an online yacht tracking service1, where yacht owners
can register their vessels and submit GPS traces along with
other information and messages. The second comprises pho-
tos from the Flickr Creative Commons dataset provided by
Yahoo2. For our experiments, we filtered out photos that
do not contain coordinates, timestamp or tags, and then we
selected 1 million photos within a bounding box around Eu-
rope and dates between 2000 and 2010. Table 1 summarizes
the characteristics of the two datasets.

Parameters and measures. The experimental evaluation
focuses on the following aspects: (a) index construction time
and size, and (b) query execution time. We also examine the
effect of the following parameters: (a) size of query spatial
range R, (b) length of query time interval T , and (c) number
of query keywords Ψ. In each experiment, we varied the
value of the selected parameter, while setting the rest to
default values, as shown in Table 2.

Index construction time and size. We first compare the
construction time and size of the GKR and IFST indexes. The
results are shown in Figures 1(a) and 1(b), respectively. The
construction time of IFST is higher than that of GKR. This
can be attributed to the overhead caused by the division
of the inverted lists into blocks and the compression of the
blocks before being written to disk. On the other hand, this
extra time spent is compensated by the savings achieved by
IFST in disk space compared to GKR.

Query execution time. Next, we vary the query param-
eters, i.e, the size of the region R, the length of the time
interval T , and the number of keywords Ψ in the query, and
we measure the query execution time.
(a) Size of query area. As shown in Figure 2, GKR shows
superior results with Flickr, whereas IFST performs better
with the Yachts dataset. This is because, in comparison to
GKR, the query evaluation time of IFST is more affected by
the size of the dataset. With more data, the IFST quadtree
grows deeper as nodes split further to accommodate more
objects. As a consequence, the number of leaf nodes that
intersect the query region becomes higher, thereby generat-
ing the overhead of loading and querying more number of
R*-trees. Moreover, the query execution time of both in-
dexes tends to increase as the query area increases. This is
due to the fact that the number of objects in the dataset
that intersect the query also becomes higher. This increase
is more noticeable between certain points, as a result of a

1http://www.yachttrack.org/
2http://yahoolabs.tumblr.com/post/89783581601/
one-hundred-million-creative-commons-flickr-images

Yachts Flickr 600K Flickr 1M

GKR
IFST

In
de

x
C

re
at

io
n

T
im

e
(m

in
s)

0

5

10

15

20

(a) Index creation time

Yachts Flickr 600K Flickr 1M

GKR
IFST

In
de

x
S

iz
e

(M
B

)

0

200

400

600

800

1000

1200

1400

(b) Index size

Figure 1: (a) Index creation time and (b) index size
for GKR and IFST.

(a) Yachts (b) Flickr

Figure 2: Query execution time vs. query area.

sudden increase in the number of grid cells in GKR and the
number of leaf nodes in IFST intersecting the query region.
More number of cells and leaf nodes causes a jump in the
range of segments that have to be considered and also in-
creases the number of temporal (K)R*-trees that have to be
loaded from disk and searched.
(b) Query time interval. As shown in Figure 3, an increase in
the duration of the query time interval also leads to a general
increase in the query execution time for both indexes. How-
ever, this increase is less pronounced than that produced by
increasing the query area, because both indexes use spatial
indexes to first filter out data which lies completely outside
the query range. Again, in these experiments, GKR outper-
forms IFST on the Flickr dataset while the latter performs
better with the Yachts dataset. It is also noteworthy that in
comparison to GKR, the query execution time for IFST varies
very little w.r.t. the time interval duration. This is be-
cause during the refinement step, IFST uses DAAT process-
ing to find the intersection of the list of segments obtained
by querying the temporal R*-trees and those containing at
least one query keyword read from the inverted index. On
the other hand, in GKR a longer time interval can produce
more number of disk pages whose timespans intersect the
query time interval. These disk pages then have to be loaded
into memory to scan their segments iteratively.
(c) Number of query keywords. As seen in Figure 4, the
execution time generally demonstrates an upward trend with
an increase in the number of keywords, and the performance
of GKR is better than that of IFST with the Flickr dataset,
while being worse with the Yachts dataset. Also, varying
the number of keywords in the query tends to impact IFST

less than GKR. This is again due to DAAT processing in IFST

which always chooses the shorter list to iterate over during
refinement and perform lookups on the longer list. In case

(a) Yachts (b) Flickr

Figure 3: Query execution time vs. query time in-
terval.

(a) Yachts (b) Flickr

Figure 4: Query execution time vs. number of query
keywords.

of GKR, while querying the cell KR*-trees, more keywords in
the query can produce more disk pages to be read from disk,
since all pages containing at least one query keyword and
intersecting the query time interval have to be considered.

Acknowledgements
This work was partially supported by the EU H2020 Project
City.Risks (H2020-FCT-10-2014-653747).

7. REFERENCES
[1] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing

large trajectory data sets with SETI. In CIDR, 2003.

[2] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword
query processing: An experimental evaluation. PVLDB,
6(3):217–228, 2013.

[3] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and
T. Suel. Text vs. space: efficient geo-search query processing.
In CIKM, pages 423–432, 2011.

[4] G. Cong, H. Lu, B. C. Ooi, D. Zhang, and M. Zhang.
Efficient spatial keyword search in trajectory databases.
CoRR, abs/1205.2880, 2012.

[5] Y. Han, L. Wang, Y. Zhang, W. Zhang, and X. Lin. Spatial
keyword range search on trajectories. In DASFAA, pages
223–240, 2015.

[6] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing
spatial-keyword (SK) queries in geographic information
retrieval (GIR) systems. In SSDBM, page 16, 2007.

[7] M. F. Mokbel, T. M. Ghanem, and W. G. Aref.
Spatio-temporal access methods. IEEE Data Eng. Bull.,
26(2):40–49, 2003.

[8] S. Nepomnyachiy, B. Gelley, W. Jiang, and T. Minkus.
What, where, and when: keyword search with
spatio-temporal ranges. In GIR, pages 2:1–2:8, 2014.

[9] L. Nguyen-Dinh, W. G. Aref, and M. F. Mokbel.
Spatio-temporal access methods: Part 2 (2003 - 2010). IEEE
Data Eng. Bull., 33(2):46–55, 2010.

