
Segmentation-Based Road Network Construction

Sophia Karagiorgou
School of Rural and

Surveying Engineering
National Technical

University of Athens
sokaragi@mail.ntua.gr

Dieter Pfoser
Department of Geography and

GeoInformation Science
George Mason University

dpfoser@gmu.edu

Dimitrios Skoutas
Institute for the Management

of Information Systems
R.C. ATHENA

dskoutas@imis.athena-
innovation.gr

ABSTRACT
This work proposes a novel method that converts movement
trajectories into a hierarchical transportation network. It
utilizes an improved map construction algorithm on seg-
mented input data based on types of movement. The pro-
duced hierarchical road network layers are then combined
into a single network. This segmentation addresses the chal-
lenges imposed by noisy, low sampling rate trajectories and
provides for a mechanism to accommodate automatic map
maintenance on updates. An experimental evaluation is con-
ducted using trajectories derived from GPS tracking taxi
fleets and utility vehicles in Berlin, Vienna and Athens.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data mining

General Terms
Algorithms, Experimentation, Performance

Keywords
map construction, trajectories, road networks

1. INTRODUCTION
The widespread adoption of GPS enabled devices has en-

abled novel applications, such as automatically inferring the
map of a transportation network by analyzing the traces of
moving objects. The inherent inaccuracies and errors of the
collected tracking data (GPS error, transmission errors, etc.)
make the map construction problem very challenging. An
example is given in Figure 6(a), which plots a set of vehicle
trajectories from Berlin. Figure 6(b) shows the correspond-
ing road network.

Existing map construction methods typically rely on uni-
formly distributed, frequently sampled, low-noise GPS traces,
which limits their applicability and effectiveness in many

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
SIGSPATIAL’13, Nov 05-08 2013, Orlando, FL, USA
ACM 978-1-4503-2521-9/13/11.
http://dx.doi.org/10.1145/2525314.2525460

real-world scenarios. In previous work [6], we have presented
a method that relies on detecting changes in the direction of
movement to infer intersection nodes, and then “bundling”
the trajectories around them to create the network edges.
Although that approach is more robust w.r.t. noisy GPS
traces and different sampling rates, it still requires the tun-
ing of several parameters to adapt to different network char-
acteristics.

In this paper, we address the challenges of map generation
from noisy, low-sampled tracking data, by analyzing, seg-
menting and reconstructing the underlying movement net-
work in a layered form. We also introduce a proximity-based
expansion algorithm around turn samples based on turn sim-
ilarity. This layered approach allows us to segment the input
dataset into groups of trajectories based on their character-
istics and then process each group separately. Moreover, in
this way we can also deal with changes and incorporate up-
dates in an incremental fashion. Through an experimental
evaluation, we show that this method, when compared to
existing approaches, produces more accurate results when
dealing with noisy and heterogeneous datasets with low and
non-uniform sampling rates.

2. RELATED WORK
As examples of related map construction works we can

cite the following. Several methods rely on k-means clus-
tering of raw GPS data using distance measures and the
heading to introduce cluster seeds at fixed distances along
a vehicle trajectory (e.g., [4]). Other approaches are based
on Kernel Density Estimation (KDE) and transform GPS
traces to discretized images. They function well for fre-
quently sampled data [3] and when there is a lot of data
redundancy [2], but are sensitive with respect to noise. Re-
cently, Wang et al. [7] addressed the problem of map updates
using a KDE-based approach. Other approaches rely on a
computational geometry techniques such as distance mea-
sures for map construction, e.g., [1]. These algorithms pose
rather strict assumptions on GPS data coverage, or, they
give partial quality guarantees. The final category involves
trace clustering approaches. These adopt heuristics-based
methods by aggregating GPS traces into an incrementally
built road network (e.g., [5]). Similarly, in [6], the authors
try to preserve the underlying connectivity of the road net-
work embedded in the vehicle trajectories. Related to this,
the contributions of this work are (i) the segmentation of
the network into layers based on speed profiles, and (ii) the
construction of a single road network by conflating network
layers.



TrajectorySegmentation(T )

� Trajectories segmentation according to speed profiles
1 for (Ti ∈ T )
2 for (Lj ∈ Ti)
3 v(Lj)←Median(v(Lj−w, . . . , (Lj+w))
4 if v(Lj) ∈ C
5 if v(Li) ∈ [Cmin, Cmax]
6 C ← Li

Figure 1: Segmentation of Trajectories

3. INFERENCE AND FUSION OF NETWORK
LAYERS

This section introduces the new segmentation-based map
construction algorithm called TraceConflation. The in-
put to the process comprises a set of vehicle trajectories. A
trajectory is modeled as a list of spatiotemporal points T =
{p0, . . . , pn} with pi = 〈xi, yi, ti〉 and xi, yi ∈ R, ti ∈ R+.
The output of the process is a road network modeled as a
directed graph G = (V,E), where the vertices V correspond
to intersection nodes and the edges E correspond to links.
The process comprises three main steps described below.

3.1 Segmentation of Trajectories
First, the input trajectories are split into subsets of (sub-)

trajectories according to their characteristics. This allows to
treat each subset separately, e.g., by refining the parameters
of the map inference algorithm accordingly, to derive differ-
ent (but probably overlapping) portions of the network with
higher accuracy.

We split and classify trajectories to different speed cate-
gories, e.g., “slow”, “medium”, “fast”. A speed value is as-
signed to each line segment of the trajectory by dividing
the length of the segment by the length of the time inter-
val of its start and end points. To avoid excessive splitting
due to changes of short duration (e.g., when a vehicle slows
down at an intersection or a traffic light), we apply a sliding
window across the trajectory, replacing the speed value of
each segment by the median value computed over a series of
consecutive line segments around it. The segmentation al-
gorithm is outlined in Figure 1. For each line segment Lj of
each trajectory Ti, its median speed is computed over a slid-
ing window of width 2 · w and the segment is then assigned
to the corresponding speed category.

3.2 Construction of Network Layers
Next, a layer of the road network is inferred for each speed

category. This is based on the TraceBundle algorithm
previously introduced in [6]. TraceBundle identifies turn
samples by detecting changes in movement, i.e., changes in
direction and speed, and clusters them to derive intersection
nodes. Clustering is based on proximity and angle difference
by using static parameters. However, since different types
of roads and intersections exist in a road network, such a
setting often results in erroneous clusters, e.g., generating
multiple nodes for a single intersection or generating a single
node for multiple nearby intersections. Here, we further
improve this algorithm with a more robust node inference
process, in particular a proximity-based expansion algorithm
around turn samples based on turn similarity.

Intersections(T )

� Clustering turns to compute intersections
1 P ← ∅ � Position samples set
2 PS ← ∅ � Turn samples set
3 CT ← ∅ � Turn clusters set
4 CI ← ∅ � Intersection nodes set
5 αmax � angle difference threshold
6 dmax � proximity threshold

� Position Samples → Turn Samples
7 For all (T [i] 6= null)
8 P ← T [i] � Positions samples of a single trajectory
9 αd ← AngularDiff(P [i− 1], P [i], P [i+ 1])

10 if (αd ∈ Angle)
11 αin ← Angle(P [i− 1], P [i]) � incoming angle
12 αout ← Angle(P [i], P [i+ 1]) � outgoing angle
13 PS .insert(P [i], αin, αout)

� Turn Samples → Turn Clusters
14 For all (PS [i] /∈ CT ) � not yet considered
15 NNP ← FindNN(PS [i], dmax)
16 CT ← ComputeTurnCluster(PS [i], NNP )

� Turn Clusters → Intersection Nodes
17 For all (CT [i] /∈ CI)
18 NNC ← FindContained(CT [i])
19 CI ← ComputeIntersections(CT [i], NNC)

Figure 2: Intersections inference

The algorithm is outlined in Figure 2. First, turn samples
are classified according to the change of direction between
the incoming and outgoing edges. Next, samples that show
a similar motion, in terms of absolute direction and spatial
proximity, are grouped together into turn clusters. The turn
clusters are constructed bottom up by finding for each turn
sample its set of nearest-neighbor samples. Turn clusters
stemming from different movement directions (left turn vs.
right turn) but relating spatially to the same intersection
are then grouped together to produce a single intersection
node. This improved method results in intersection nodes
being placed more accurately (see example in Figure 3).

3.3 Conflation of Network Layers
The final step is the fusion of the generated layers for the

different speed categories. This is done incrementally start-
ing from higher speed layers and progressing to lower speed
layers. The intuition for this is that higher speed layers cor-
respond to avenues and highways and can be reproduced
with higher accuracy. Fusion comprises: (i) finding inter-
section node correspondences among the different network
layers, (ii) introducing new intersection nodes onto the exist-
ing links of a higher layer and (iii) introducing new links of
lower layers for the uncommon portions of the road network.

The algorithm is outlined in Figure 4. Corresponding
nodes across layers are identified by spatial proximity. Next,
using a buffer region around intersection nodes of lower lay-
ers (e.g., medium network), we identify intersection nodes
that are close to existing links of higher layers (e.g. fast net-
work). These new intersection nodes are then mapped onto
the existing link and effectively split it. Finally, new links
for uncommon portions of the layered network are added
by connecting them to previously introduced intersection



(a) Intersection nodes in TraceBundle

(b) Intersection nodes in TraceConflation

Figure 3: TraceBundle vs TraceConflation nodes

Tracking Traje- Sampling Trajectory Speed
Data Vehicles ctories rate (sec) length (km) (km/h)

Berlin 15051 26831 41.98 41116 35.23
Vienna 7434 12773 38.59 16106 33.68
Athens 120 511 30.14 6781 20.16

OSM Network Nodes Links Length (km) Area (km2)

Berlin 5894 6839 360 36
Vienna 8081 9969 495 33
Athens 32212 39699 2000 168

Table 1: Statistics for datasets used

nodes. Figure 5 illustrates an example of this conflation
process.

4. EXPERIMENTAL EVALUATION
We have conducted an experimental evaluation comparing

TraceConflation to TraceBundle [6] on three tracking
datasets for Berlin, Vienna and Athens, respectively. In
each case, the corresponding road network obtained from
OpenStreetMap was used as ground-truth. The statistics of
the datasets are provided in Table 1.

A quick and easy way to get an overview of the quality
of the inferred road network is by visual inspection, i.e., by
overlaying it on the reference network and looking for simi-
larities and differences. Due to space limitations, in Figure 6
we illustrate only the results for the Berlin dataset. For
better illustration, we have marked some areas on the map
where improvements of TraceConflation (Figure 6(d))
over TraceBundle can be observed (Figure 6(c)).

A more systematic and quantitative evaluation can be per-
formed using the method introduced in [6]. Given the con-
structed and ground-truth networks, a common set of 500
pairs of nodes (origin, destination) is selected in both. Then,

ConflateNetworks(H,L)

1 EH ← Edges(H)
2 NH ← Nodes(H)
3 EL ← Edges(L)
4 NL ← Nodes(L)
5 NHL � intersection pairs

� Node alignment
6 For all NL[i]
7 NHL ← (NL[i], 1-NN(NL[i], NH))

� Node insertion to higher layer
8 For all (NL[i] /∈ NHL)
9 Ei = On(EH , NL[i])

10 if Ei 6= null
11 NH .add(NL[i])
12 EH .delete(Ei)
13 E∗

i ← Ei.split(NL[i]) � produces two links
14 EH .delete(Ei)
15 EH .add(E∗

i )
� Link insertion

16 For all (NL[i] /∈ NH)
17 NH .add(NL[i]) � remaining nodes
18 For all (EL[i] /∈ EH)
19 EH .add(EL[i]) � remaining links

Figure 4: Conflation of Network Layers

Discrete Fréchet Average Vertical
distance distance

min max avg min max avg

TraceBundle 18 428 183 8 209 106
Berlin TraceConflation 14 398 137 6 201 98

TraceBundle 15 410 111 4 212 94
Vienna TraceConflation 12 382 103 2 198 81

TraceBundle 19 432 125 9 225 98
Athens TraceConflation 15 401 104 6 176 86

Table 2: Shortest-path comparison summary

the shortest paths between those pairs are computed in both
networks. Performing a number of random shortest-path ex-
periments, the geometric difference/similarity between the
computed shortest paths can be used as a means to assess
the quality of the constructed network. In particular, we
calculate two similarity measures for each pair of shortest
paths: (i) the Discrete Fréchet distance and (ii) the Aver-
age Vertical distance. This method produces an aggregated,
quantitative comparison over whole portions of the road net-
work. The evaluation shows a significant improvement in
path similarity and, consequently, the constructed network:
93.8% of the paths showed increased similarity. Similar re-
sults were obtained for the Vienna and Athens datasets. Ta-
ble 2 provides aggregated results for all three datasets.

5. CONCLUSIONS
This work describes a novel approach to the map construc-

tion problem based on segmenting the trajectory dataset
using speed profiles, constructing separate map layers, and
then conflating them into a single road network. The results
of our experimental evaluation on three large-scale trajec-
tory datasets from vehicles moving in Berlin, Vienna and
Athens have shown significant improvement of the result
quality when compared to existing approaches.



Figure 5: Stitching different network layers

Acknowledgments
This work was supported by the EU FP7 Marie Curie Initial
Training Network GEOCROWD (FP7-PEOPLE-2010-ITN-
264994).

6. REFERENCES
[1] M. Ahmed and C. Wenk. Constructing street networks

from gps trajectories. In Proc. 20th Annual European
Symposium on Algorithms, 2012.

[2] J. Biagioni and J. Eriksson. Map inference in the face
of noise and disparity. In Proc. 20th ACM
SIGSPATIAL GIS conf., pages 79–88, 2012.

[3] C. Chen and Y. Cheng. Roads digital map generation
with multi-track gps data. In Proc. of the 2008 Int’l
Workshop on Geoscience and Remote Sensing, pages
508–511, 2008.

[4] S. Edelkamp and S. Schroedl. Route planning and map
inference with global positioning traces, pages 128–151.
Springer-Verlag, New York, 2003.

[5] A. Fathi and J. Krumm. Inferring the road network
from gps data. In Geographic Information Science,
volume 6292, pages 56 – 69, 2010.

[6] S. Karagiorgou and D. Pfoser. On vehicle tracking
data-based road network generation. In Proc. 20th
ACM SIGSPATIAL GIS conf., pages 89–98, 2012.

[7] Y. Wang, X. Liu, H. Wei, G. Forman, C. Chen, and
Y. Zhu. Crowdatlas: Self updating maps for cloud and
personal use. In Proc. 11th MobiSys conf., 2013.

(a) Berlin–Vehicle tracking data

(b) Berlin–Corresponding road network (OSM)

(c) Berlin–TraceBundle

(d) Berlin–TraceConflation

Figure 6: Visual comparison of trajectories, original
and generated road networks


