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Abstract. Resource consumption is typically monitored at a single point
that aggregates all activities of the household in one time series. A key
task in resource demand management is disaggregation; an operation
that decomposes such a composite time series in the consumption parts
that comprise it, thus, extracting detailed information about how and
when resources were consumed. Current state-of-the-art disaggregation
methods have two drawbacks: (a) they mostly work for frequently sam-
pled time series and (b) they require supervision (that comes in terms
of labelled data). In practice, though, sampling is not frequent and la-
belled data are often not available. With this problem in mind, in this
paper, we present a method designed for unsupervised disaggregation
of consumption time series of low granularity. Our method utilizes a
stochastic model of resource consumption along with empirical findings
on consumption types (e.g., average volume) to perform disaggregation.
Experiments with real world resource consumption data demonstrate up
to 85% Recall in identifying different consumption types.

1 Introduction

Resource conservation, concerning for instance water, energy or fuel, is an impor-
tant challenge for modern societies. Monitoring and analysing the consumption of
resources is a valuable tool in developing resource conservation policies. Analysis
of consumption time series includes several tasks, one of which, disaggregation,
is the focus of this paper.

Disaggregation is the process of analysing a composite time series into the
individual components that it consists of. In the case of resource consumption,
the composite time series consists of several discrete consumption types. As an
example of resource disaggregation we consider a household’s water consump-
tion: A household’s water consumption is measured at the main supply where
the consumption of all the various consumption types (e.g., clothes-washing,
showering) is aggregated. The goal of a disaggregation algorithm would be to
identify when a shower was taken, when the washing-machine was being used,
etc.
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Fig. 1. An example of a group of patterns aggregated within an one hour measurement.
In this example two toilet flushes and a washing machine cycle are aggregated within
the measurement of 17:00 hours.

An important property that affects disaggregation performance is the relation
between consumption type duration and measurement interval length. When the
measurement interval is smaller than the expected consumption type duration,
disaggregation can be effectively approached as a pattern recognition problem,
since there are enough measurements for the pattern of each consumption type
to be identified. However, if the measurement interval is equal or larger than
the duration of a consumption type, an occurrence of a consumption type can
start and finish inside the interval of a single measurement. This means that the
pattern of the consumption type is essentially lost. This makes the disaggregation
problem much more challenging. An example of this is presented in Figure ?77.
Generally, in residential resource consumption, major consumption types have
durations ranging from several minutes to 2-3 hours. Thus, in this setting, time
series with measurement interval of 15 minutes or larger (e.g., 30 minutes, 1
hour) can be considered of low granularity. In practice, resources, especially
water, are measured at low granularity. The reasons for this are limitations
of the sensors, usually due to battery life, and increased infrastructure costs
required for the transmission of high frequency measurements from a very large
number of sensors. However, very few works have handled the problem of resource
disaggregation in low granularity data.

Another shortcoming of most existing disaggregation algorithms is that they
need to be trained on a labelled dataset [?,7,?]. This means they require a dataset
with time series of each consumption type measured separately and labelled, so
that the algorithm can learn to identify its pattern. However, gathering such
datasets requires costly and intrusive measurement trials.

All existing algorithms have one or both of the above requirements, which
makes them unsuitable for many real world applications. Motivated by this, we
present a disaggregation method for low granularity time series that does not
require a labelled dataset. Our method is based on a stochastic model of re-
source consumption that we have developed. Instead of labelled data, it requires
approximate assumptions concerning the volume, frequency and usual time of
occurrence of each consumption type. These assumptions are simple and intu-
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itive and can be retrieved from the literature [?,?,?,?], provided by experts or be
requested from the users. Utilizing those assumptions and the stochastic model,
our method calculates the probability that each consumption type has occurred
at each time.

In order to thoroughly evaluate our algorithm, we test it in two datasets: one
consisting of residential water consumption data, and one consisting of residential
energy consumption data, both of hourly granularity. Our algorithm achieves
good performance on both datasets.

The rest of the paper is organized as follows: in Section 7?7 we present related
work, in Section 7?7 we describe and formulate our method and, finally, in Section
7?7 we present the experimental evaluation.

2 Related Work

Reviewing the literature on time series disaggregation, we can discriminate exist-
ing work into two categories. The high granularity algorithms, that are designed
for data with measurements intervals ranging from milliseconds up to one minute
and the low granularity algorithms, that can be applied to data with measure-
ment intervals from several minutes to several hours. Our distinction between
low and high granularity is based on the relation of the measurement interval to
the average consumption type duration, as we described in Section 77.

In the high granularity setting [?,?7,7,7,7,7,?], existing works usually scan the
time series to identify significant step changes in consumption that indicate the
start or the end of a specific consumption event. Then, using a Machine Learning
model and labelled data, they identify the consumption types each consumption
event. Existing methods mainly vary in the adopted Machine Learning model.
In [?], the authors use a Hidden Markov Model (HMM) to classify the events. [?]
use a convex optimization approach, similar to Support Vector Machines (SVM),
and [?] use a Neural Network. There also exist a few unsupervised approaches
in the setting of high granularity data. In [?], the authors model consumption
using an extension of the HMM. Instead of labelled data, they use detailed
assumptions about each device’s consumption pattern and usage. They evaluate
their algorithm on data with granularity of 3 seconds. In the same line of work,
[?] use a version of HMM to perform disaggregation on time series with 1 minute
granularity. The algorithm does not require labelled data, however, it requires
information concerning each device’s exact consumption pattern. We note that
HMM models are succesful in high granularity time series, where the transitions
between different operating stages of an appliance are detectable in the time
series pattern. On the contrary, those transitions are, generally, not detectable
in low granularity data.

In the setting of low granularity data [?,7], the general approach is to model
the aggregate time series as a sum of separate components, that represent the
various consumption types, and apply an optimization algorithm in order to
decompose the time series into those components. In [?], the authors apply Sparse
Coding, a model that allows the combination of a large number of basis functions



4 Pantelis Chronis et. al

Daily Water Consumption

123456 7 891011121314 151617 1819202122 2324

Time (Hours)

Fig. 2. A time series of the water consumption of a day, for a single household, divided
in its major consumption events.

by imposing sparsity constraints, on low granularity (15 min) time series. [?] use
the same idea as [?], but modify the algorithm to work iteratively, disaggregating
only one consumption type in each iteration. These approaches also require a
set of labelled time series for the various consumption types, which they use as
basis functions.

3 Model Formulation and Disaggregation Algorithms

In this section, we present our method. We start by providing an intuitive
overview and, then, we describe the details of the method.

We can obtain an intuitive understanding of the challenge by looking at an
example. Given a consumption time series like the one depicted in Figure 77, we
aim at identifying the occurrences of each consumption type in time. There are
two sources of information about the occurrence of a consumption type: (i) The
footprint that the occurrence leaves on the aggregate time series. For example,
in a water consumption time series, if a shower is taken at some time, we would
expect to observe consumption of around 50 Litres or more at that time; (ii)
The external information we have about each consumption type: how frequently
it occurs and at which hours within a day.

Our disaggregation approach is based on developing a model for the consump-
tion behaviour of the household that incorporates the aforementioned sources of
information and which we can use to infer the occurence of the various consump-
tion types. In order for disaggregation to be performed effectively, the model
needs to capture the structure of the problem, use only available information
and handle the variabillity of human behaviour. The model is based on the as-
sumption that there exists a set of major consumption types, each of which is
represented by an amount of consumption, an expected time and a frequency
of occurrence. The model is stochastic in nature since: (i) These quantities may
randomly vary between different occurences of the consumption type and be-
tween different households; (ii) There is inherent uncertainty in our estimates of
these quantities for each household. The model and the disaggregation process
are described in detail in the next subsection.
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3.1 Method Description

Events identification. The first issue that arises is that an occurence of a
consumption type may be divided in more than one measurements. For example,
if an activity started at 09:50 and finished at 10:10, its consumption would
be distributed in two consecutive measurements. However, if we select a part
of the time series that starts and ends with (near) zero consumption, given
the assumption that no consumption type can have a pause of one hour or
greater, we can be certain that all consumption types that started inside this
interval have also ended, i.e., this interval comprises only complete consumption
types. We refer to those parts of the time series, that start and end at near zero
consumption, as consumption events or just events. Figure 7?7 shows an example
of a day’s consumption events.

Thus, our first step is to identify the distinct consumption events. To achieve
this, we sequentially scan the time series and isolate the sequences of all consec-
utive points whose value exceeds a threshold 6., above which the consumption
is considered significant. Threshold 6. is set using the assumptions about the
volume of each consumption type, so that it is only exceeded if some consump-
tion type is occuring. We denote as t; t the times of start and end of

Jstart? “Jend
consumption event j.

Model description. We consider a set of n major consumption types. For
each consumption type 7,1 < i < n, we assume that its total consumption c¢;
is distributed according to a normal distribution with mean p; and standard
deviation ;. We treat all minor consumption types as background noise and
model them using variable b with mean p;, and standard deviation o,. We denote
the probability of consumption type ¢ occurring at time h as 7;. In order to limit
the computational complexity of the model, we make the assumption that each
occurrence of a consumption type is only affected by other occurrences of the
same consumption type within a specified time period. For most cases, this period
would be a day or a week (e.g., people tend to shower once a day or use the
washing machine two or three times a week). We denote as v the probability
that consumption type ¢ occurs k times in the duration of the predefined time
period. We also define K as the maximum value of k. For simplicity, we do not
include in the model any dependencies between the total number of occurrences
of different consumption types, i.e., v; is independent of vy, [ # i.

Given a set of m consumption events, each event j,1 < j < m is represented
by the following: the time it started ¢, the time it ended ¢, and its total

Jstart? Jend

consumption s;. We denote as It; a vector containing both ¢, . and ¢;_ ,,
which defines the time interval of event j. The total consumption of event j is
the result of the aggregation of each major consumption type i occurring x;;

times, plus the background noise:

n
Sj = Z Ci%ij + b (1)
i=1
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Fig. 3. The Bayesian Network that describes the dependencies within a period com-
prised of three consumption events. Each consumption type occurence depends on the
observed consumption, the time of day and the previous occurences in the given period.

with 2;; € N. As z,; we denote a vector [x1,- -+ , Zm; ], that contains the number
of occurrences of every consumption types in the interval of event j. All notation
is gathered in Table ?? for convenience.

The probability of occurrence of consumption types z.; in an event j depends
on the total consumption of the event s;, the time of the event It; and all other
occurrences of consumptions of the same type x,;, inside the time period. For
further analysis, it is convenient to formulate these dependencies into a Bayesian
Network (BN). For example, the BN of Figure ?7 illustrates a period containing
three events. More events may be handled in a similar fashion. We note that the
directions of the arrows show the order of decomposition of the joint probability,
however the dependencies between the variables are bidirectional [?].

The purpose of the disaggregation algorithm is to infer the values of z,;,1 <
7 < m. Since we consider each period to be independent from the others, we
can treat each period separately. We assume that period d has my consumption
events 7,1 < j < mgy. We denote as N;x.; the joint possibility of all occurrences
Txj,1 < j < myg, i.e the possibility of occurrences .1, T«2,-**, T«m, happening
in the same period. N;z,; contains the occurences of all consumption types in
all the events of a period. N;s; and N;It; are defined in the same way.

The probability of N;z,; can be written as:

(N Ity N85 1 N 2PN T45)
p(ﬂj I, ﬂj sj)

Given the dependencies modelled by the BN, Equation (??) is transformed to:

p(Nyzas | Ny 1L, Nys;) =

(2)

1,1 <i<mn index of consumption type |u:, o mean and stand. dev. of ¢;
7,1 <m <m index of consumption event b volume of background noise
Sj total consumption of event j |by, bo mean and stand. dev. of b
Zij occurences of type ¢ in event j| It; interval (¢j,,,,., tj...,) Of event j
Ty all occurences within event j | 7;,  prob. of cons. type i at hour h
Ci consumption volume of type i| v;x prob. of type i occurring k times

Table 1. Notation
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p(Nj sy | N; 1) 1T, p(sy | 24j)
p(N;s; | N;1ts)

p(Njzy | Ny 1L, Nysj) =

3)

From Equation (??) we have:

n n
p(s; | x4j) = Normal(z i % Tij + o, ZO’? * T + 0p) (4)
i=1 i=1
as s; is a sum of normally distributed variables. The term p(s;|z.;) models the
probability of observing consumption s;, given that consumption types z.; have
occurred.

The term p(N;x.;| N; It;) corresponds to the prior probability of the con-
sumption types occurring at the specific times N;It;, irrespective of the observed
N;s;. It depends on the probability that the activities defined by Nj;x.; occur
all in a single period and that the occurrences are distributed accordingly in the
time of the observed consumption events. We model it using the assumptions
about frequency and time of occurrence of each consumption type:

n
p(ﬁjx*j | ﬂj Itj) = H’Uiki * Multmomzal(acl] VL Tij V]) (5)

i=1
As defined, the term w;, is the probability of consumption type i occurring
k times overall. The multinomial distribution models the probability for the
consumption types to occur at the specific intervals of the consumption events j.
We can break the joint probability into a product because we have assumed that
the occurrence of the different consumption types are independent. In Equation
(??), k; is the total number of occurrences of consumption type ¢ and m;; is the

probability of consumption type i occurring in the interval defined by It; :

tiena

ma
ki =Y @iy, Tg = > T (6)
=1 h=t,

JIstart

Finally, the denominator of Equation (??) is the sum of the probability of
all possible joint events N;x,; and is constant for all z,;:

p(Nys; | Ny Tt) = > p(Naay | 0y I1t) [ [ (s | ) (7)
N5 T J
In order to perform the disaggregation, we need to find N;x.; that maximizes
the probability of Equation (?77?):

argmazn;e, ;P02 | O It N;s;) (8)

The above maximization problem is too complex to solve exhaustively, since
the number of possible combinations grows exponentially. For example, in a case
with five events, and five activites that can occur up to five times, there are
more than 107 combinations. In order to find a solution for Equation (?7?),
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Algorithm: GREEDYAPPROXIMATION

Input 2 Itj,s5,1<j<m
Output : Njx«; of mazximum probability

1 for j =1 to myq do
2 L Z+; = EVENTOFMAXPROBABILITY ([}, Sj, Ta1y .-, Trj—1)

3 return N;T.;

we implement two different algorithms: a greedy approximation and a Markov
Chain Monte Carlo simulation. Next we describe each method.

1. Greedy Approximation. We start by calculating the most probable oc-
currences for the first event, ignoring all next events. Then we incrementally
calculate the most probable occurrences for following events, given the occur-
rences of all previously calculated ones. This process is described in Algorithm
GREEDYAPPROXIMATION.

The probability of occurences given the previous events are:

p(sj | @) - ploay | Ity, (V2] 2.1) )
—1
p(sj | Ity, NIZ) 2)

where p(s;|z.;) is calculated as in Equation (??7). The term p(z.;|It;, ﬁ{;lla:*l),

plaay | Ity, 85, N ) =

is only conditioned on the occurrences of the previous events ﬂ{:—llcc*l. Since only
one event is examined at each step, the binomial distribution is used instead of
the multinomial, to calculate the probability of occurrence of each consumption
type in the specific time of the event:

n K J
plag | ITty, M- zy) = H Z vk, * Binomial (x5, k, mj), ki= inl (10)
1=1

i=1k=k;

For each z.;, we exhaustively search all its possible values and select the one
with the maximum probabillity (Algorithm EVENTOFMAXPROBABILLITY).

2. Markov Chain Monte Carlo (MCMC). MCMC is a set of algorithms
used to sample from the joint probability distribution described by a Bayesian
Network. Given a set of observed variables (N;s;,N;/t; in our case), we want
to sample from the distribution of the unobserved variables (N;z.;), in order to
find their most probable values. To achieve this we apply the Gibbs sampling
algorithm, which sets the observed variables to their observed values, randomly
initialises the unobserved variables and sequentially updates the value of each
unobserved variable with a value sampled from its conditional distribution, con-
ditioned on all other variables. The conditional distribution of . is:
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Algorithm: EVENTOFMAXPROBABILLITY

Input 2 It 85,%u1, .., Tuj1
Output t Tyj of maximum probability
1 Tmaz =0, Pmaz =0
2 for every possible value of x.; do
3 | p=pl@yllty,s; 02 wa)
4 if p > pmas then
5 L Pmaz = P; Tmaz = Txj

[

return ,,qx

PRE]
p(ssleey )P O Tty M7 )
A#£]
PO 851 0 Tty 2 )

The terms of Equation (??) can be derived in a straightforward way from
Equations (?7),(??). Due to lack of space we skip those derivations. After many
iterations of this process, the sampled values follow the joint probability of the
Bayesian Network. Based on the obtained samples we find the most probable
value for M;z.;.

ma,l#]
rwl*l

p(@| Ny It, 0585, Ti) = (11)

4 Evaluation

4.1 Baseline

To the best of our knowledge our work is the first to handle the problem of
unsupervised disaggregation in time series of low granularity (>1 minute). To
obtain some comparative results, we device a baseline method that uses cluster-
ing similarly to [?]. Each consumption event is represented as a triple, containing
the starting time, the total consumption and the total length of the event. The
k-means algorithm is used to cluster the consumption events and the known in-
stances of all consumption types are assigned to the clusters accordingly. Then,
in order to perform disaggregation of an event, we find its closest cluster and take
the most probable consumption types of the cluster. For the water consumption
dataset, where, as we explain in Section 77, the negative events are not known
with certainty, we select as representing of showering behaviour a set of clusters
that has a total number of events close to the known total number of showers.

4.2 Water Consumption Dataset

The water cconsumption dataset was gathered from a real world trial performed
in the context of DATAD? project, that addresses the issue of water sustainabil-
ity through the use of Information Technology. The dataset consists of water

3 http://daiad.eu/



10 Pantelis Chronis et. al

Recal Positive Rate True Positive Ratio
09 056 14

08 055 12
07
06
05 053 08

04 052 06
03
02
01 0s 02

051 04

Greedy Approx MCMC Sampling Baseline Greedy Approx MCMC Sampling Baseline Greedy Approx MCMC Sampling Baseline
(a) (b) (c)

Fig. 4. The performance of all algorithms in terms of (a) Recall, (b) Positive Rate and
(c) True Positive Ratio, on the water dataset.

consumption data for 17 households, measured hourly. Also, for each household,
there are measurements that contain starting, ending time and total consump-
tion of numerous shower occurrences. Due to the real-world conditions of the
experiment, the time of occurrence of a significant portion of the showers is ac-
tually unknown. Thus, we cannot state with certainty that at a given day and
time a shower was not taken. This means that, while we can directly measure the
recall of identifying the showers, we are unable to directly measure the accuracy
of the algorithm. However, we have knowledge of the total number of showers,
which we use to compensate for the latter. We achieve that by using appropriate
evaluation metrics, which we describe next.

The first metric we use is Recall (RC), which measures how many of the
known occurrences are retrieved by the algorithm. In order to evaluate if the
algorithm is overly biased towards positive classification, we use the following
two metrics: Total Positive Ratio (TPR) and Positive Rate (PR). Let A be
the total number of showers that the algorithm predicts, B the total number
of showers that have actually occurred and C' the total number of consumption
events. Then TPR and PR are defined as:

A A
TPR = 5’ PR = c (12)

Finally, we use the Average Length of an Event (AEL), in hours, to evaluate
the precision of the disggregation in time. The results are presented next.

As we can see in Figure 77, our proposed methods achieve very good RC,
with acceptable values of TPR and PR. We note that the optimal value for TPR
is 1.0. For PR, values significantly different than 0 and 1 indicate a non-trivial
behaviour. The greedy approximation algorithm achieves the highest RC (0.85).
From the PR metric, we can see that such high RC is achieved without classifying
excessively many instances as positive. The TPR metric shows that the greedy
approximation overestimates the total number of showers by an acceptable factor
of 20%. The MCMC algorithm is balanced in both metrics (0.84 RC, 1.08 TPR).
The baseline method does not perform well in terms of RC, while it also severely
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Fig.5. The performance of each algorithm on the energy consumption dataset: (a)
The average Accuracy (b) The average Accuracy per consumption type.

underestimates the total number of showers. The fact that the baseline’s PR is
similar to that of the other methods, while its TPR is much lower, is because
the algorithm does not predict multiple showers in the same event. Due to that,
we experimented with a modified version of the baseline, which predicted two
showers in each event that it classifies as positive. This did not improve RC while
it severely increased TPR. Finally, the AEL value for all algorithms is 2.71 hours,
which means that each occurrence of the consumption type is specified within a
window of 2.71 hours, by average. It is the same for all algorithms because they
share a common consumption events identification step.

4.3 Enery Consumption Dataset

For energy consumption, we use the Reference Energy Disaggregation Dataset
(REDD) [?]. REDD contains separate consumption time series for several ap-
pliances, as well as the aggregate power consumption, for 6 households. The
interval of measurement is 1 second. Since we are intereset in lower granularity
datasets, we downsample the data to 1 hour. In this dataset, both positive and
negative labels are available, thus we can use the Accuracy (ACC) measure. We
calculate the AEL measure for this dataset as well.

In Figure 7?7, we see the performance of the algorithms on the energy con-
sumption dataset. We can see that our algorithm achieves relatively high ACC
(0.68) and outperforms the baseline (0.59). Figure ?? presents the performance
on each consumption type separately. We can see that our algorithm achieves
high ACC and outperforms the baseline in four consumption types (clothes-
washer, dish-washer and air-conditioner,). On the other hand, the baseline per-
forms better in two consumption types (oven and furnace). The most likely
explanation for this is that our assumptions were not sufficiently accurate for
those particular consumption types, thus comprising a subject for further inves-
tigation, in future work.
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5 Conclusion

In this paper, we presented a novel method for resource consumption disaggre-
gation, that works effectively on low granularity data (e.g., 1 hour). Our method
does not have the demanding requirement for labelled observations, which are
hard to obtain. To our knowledge, our algorithm is the first that addresses the
disaggregation problem under those constraints. This is particularly important
in real world settings, especially for water consumption, where high frequency
and labelled data are rarely available. We evaluated our algorithm in two resi-
dential consumption datasets and showed that it achieves high performance (up
to 85% Recall) in identifying consumption types. Thus, our algorithm constitutes
an effective solution for analysing resource consumption in real world settings.
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