
Exposing Points of Interest as Linked Geospatial Data
Kostas Patroumpas

IMSI, Athena Research Center, Greece
kpatro@imis.athena-innovation.gr

Dimitrios Skoutas
IMSI, Athena Research Center, Greece
dskoutas@imis.athena-innovation.gr

Georgios Mandilaras
University of Athens, Greece

gmandi@di.uoa.gr

Giorgos Giannopoulos
IMSI, Athena Research Center, Greece
giann@imis.athena-innovation.gr

Spiros Athanasiou
IMSI, Athena Research Center, Greece
spathan@imis.athena-innovation.gr

ABSTRACT
Point of Interest (POI) data is widely used in many modern applica-
tions and services related to navigation, tourism, social networking,
logistics, and many more. In this paper, we propose a comprehen-
sive and vendor-agnostic data model to represent multi-faceted and
enriched POI profiles. Harnessing the versatility of Linked Data
technologies, this semantically rich ontology accommodates and
extends existing POI formats for assembling and managing POI
data from heterogeneous sources. Furthermore, we have developed
the open-source software TripleGeo, which can effectively trans-
form POI data from diverse sources and formats (geographical files,
databases, and semi-structured data) to their RDF representations
and vice versa. Thus, it is possible to import POI data from various
existing systems and products, transfer and address the data inte-
gration challenges in the Linked Data domain, and export back the
results. Our empirical study confirms the validity and efficiency of
this framework for a variety of real-world POI assets and formats,
underscoring its robustness to cope with scalable data volumes.
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1 INTRODUCTION
Points of Interest (POIs) are geospatial entities that represent physi-
cal locations or constructs of some particular interest or utility. At
a minimum, a POI is characterized by its name, a category, and a
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geolocation (usually represented by longitude/latitude coordinates).
But usually POI entities have many more properties, which ei-
ther describe additional thematic attributes (address, contact details,
working hours, etc.) or relationships to other entities (e.g., a shop
within a mall, a dealer POI related to a manufacturer POI). POIs are
valuable resources utilized in our everyday lives (e.g., navigation,
social networks, tourism) as well as in various commercial domains
(such as logistics, advertising, or geomarketing). Among the Big POI
Data assets, HERE Places API1 offers information about 55 million
POIs in 237 countries; Google Places API2 advertises over 150 mil-
lion POIs globally; from OpenStreetMap, we have extracted more
than 18.5 million POIs regarding specific categories3. Increasing
data volumes and the evolved POI value chain constantly introduce
opportunities for growth, but also intensify complexity relating to
quality-assured data integration, enrichment, and sharing.

Despite the importance and high commercial value of POI data,
diversemodels, formats and identifier schemes are currently adopted.
POI profiles are highly diverse in the types of attributes they con-
tain. POI data is semantically diverse and spatiotemporally evolving,
representing different entities and associations depending on geo-
graphical, temporal, and thematic context or application fields. For
instance, tourist guides may offer richer descriptions and accessi-
bility information, whereas Yellow Pages contain mostly business-
oriented information (classification by industry, contact details,
etc.). Lack of standardization in representing and exchanging POI
data combined with industrial competition (e.g., mapping or naviga-
tion applications) is another important factor. Earlier limitations in
Personal Navigation Devices have also restricted the expressiveness,
accuracy and completeness of POI schemata and data.

Current solutions only partially handle such issues on a case-per-
case level. Several existing tools or services can perform pairwise
mappings and transformations from a source schema or format to
a target one. However, nearly all of them are dataset- or use-case
specific and are mostly used to convert from one conventional POI
format to another, instead of supporting transformations to a global
schema. Finally, due to their ad-hoc nature, efficiency against di-
verse POI models and scalability with larger datasets is problematic.

However, Linked Data technologies can provably address cur-
rent limitations, gaps and challenges in integrating, enriching, and
sharing POI data [1, 2]. In this paper, we provide an account of our
experience regarding POI data representation and transformation
to/from the RDF data model4 in real-world, industrial settings.

1https://developer.here.com/products/geocoding-and-search
2https://cloud.google.com/maps-platform/places/
3http://slipo.eu/?p=1397
4Resource Description Framework (RDF): https://www.w3.org/RDF/
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First, we introduce a comprehensive, rich, and vendor-agnostic
model for exposing POIs on the Linked Data domain in a consistent
and unified way, regardless of their original schemata and formats.
Our proposed POI ontology reflects characteristics identified in a
wide spectrum of datasets and representations, but it is also exten-
sible for specific use cases and applications in the industry.

Second, we provide to stakeholders of the POI value chain a
unified framework for performing transformation and mapping of
individual and diverse datasets and schemata into RDF adhering
to a common POI ontology. We have been developing TripleGeo,
an open source, robust, efficient, and extensible software, which
facilitates transformation of POI data from a variety of de facto
geospatial formats into RDF triples with minimal overhead. This is
possible through adaptable, configurable, and reusable mappings
from existing schemata into our POI ontology, whilst there is also
support for classification hierarchies in assigning categories to POIs.
Besides, this software can be also used for reverse transformation
of the added-value POI entities back to conventional formats for
exploitation by services and products in the industry.

Overall, the proposed model and software make it possible to
acquire POI data from various existing systems and products into a
POI data integration lifecycle (for interlinking, fusion, enrichment,
quality assurance) based on Linked Data principles and technolo-
gies [1]. Besides, its utilization in POI data integration tasks [2] has
been guided by commercial POI stakeholders from diverse domains
(navigation, geomarketing, tourism) and assessed on real-world
data to confirm its interoperability, extensibility, and scalability.

The remainder of this paper proceeds as follows. In Section 2 we
survey related work. In Section 3, we introduce our POI ontology
and in Section 4we present our software for transforming POIs from
de facto formats into RDF and back. In Section 6 we evaluate our
proposed framework against large real-world POI data. Section 7
summarizes our contribution and outlines future extensions.

2 RELATEDWORK
Next, we survey existing POI representations to identify common
and special characteristics, as well as issues regarding transforma-
tion of geospatial entities (and POIs in particular) to RDF.
POI Representation. Towards facilitating development of large-
scale applications and services over linked geospatial data, the Open
Geospatial Concortium (OGC) has suggested the GeoSPARQL stan-
dard5. This provides a concrete ontology for representing features
and geometries in RDF as literals according to Well Known Text
(WKT)6 or Geography Markup Language (GML)7 standards by
OGC, while also offering a rich collection of query operators. As
this standard does not explicitly intend to model POI features, a
W3C group (later jointly with OGC) started developing technical
specifications for the representation of POIs on the Web. Although
still in progress, this representation8 interestingly distinguishes
locations that may refer to the centroid of the POI, its navigation
point (e.g. the POI’s entrance or parking lot), an area or other type
of geo-reference. For each POI, a category element contains an iden-
tifier for the classification scheme and a term within this scheme.
5OGC GeoSPARQL standard: https://portal.opengeospatial.org/files/?artifact_id=47664
6OGC WKT standard: http://portal.opengeospatial.org/files/?artifact_id=25354
7OGC GML standard: http://portal.opengeospatial.org/files/?artifact_id=20509
8http://www.opengeospatial.org/projects/groups/poiswg

A POI may also have one or more time primitives that represent an
individual point in time, a span of time, or a recurring time or time
span. The model also supports relationships between POIs, such as
contained-within, contains, or adjacent-to. In a separate approach,
the SDI4Apps project9 has developed a SPARQL endpoint based
on a POI data model that also takes care of extra attributes like ac-
cessibility and internetAccess information, rights regarding license
information, date when a POI was created, as well as relationships
between POIs, such as sfWithin, sameAs, or exactMatch.

Amongst open POI data sources, OpenStreetMap (OSM)10 is the
most prominent. OSM geometry primitives include nodes, ways,
and relations, as well as a free tagging system, whereby tags asso-
ciate metadata to the map objects as key-value pairs. Yet, the OSM
schema is not specifically tailored to representing POIs and there
is no distinction from other types of entities (e.g., road segments,
boundaries, rivers, etc.). This makes it significantly harder to ex-
tract POI information, since relevant categories must be deduced
from tags. In exposing OSM elements (including POIs) to RDF,
LinkedGeoData11 offers a SPARQL endpoint over OSM data with
billions of triples interlinked with DBpedia12 and GeoNames13.
Wikimapia14 is another open-content map provider for crowd-
sourced places (including POIs). It offers extra information on map
objects around a selected one (e.g., similar_places, nearest_places)
as well as nested places (i.e., smaller places inside a larger one).

Amongst commercial applications, Foursquare offers aWebAPI15
for searching about locations via its venues endpoint. Apart from
standard properties (location, name, address, etc.), Foursquare also
lists extra information, such as working hours, popular hours, price
tier, rating, likes from users, menu, etc. Besides, Google Places
provides a Web API16 for querying information about places on a
variety of categories like establishments, geographic locations, and
POIs. Regarding POIs, apart from basic information, it also returns
photos, price_level, as well as rating and reviews from users.
POI Transformation. The R2RML Recommendation17 by W3C
specifies a notation for mapping relational tables, views or queries
into the RDF data model. Defined as a superset of R2RML, the more
generic RDF Mapping Language (RML) [4, 5] offers customized map-
ping rules from heterogeneous data sources (not only relational
databases, but also CSV, XML, or JSON formats) to RDF. Regard-
ing transformation tools and scripts, most of them are considered
proof-of-concept prototypes [12] that can reuse existing vocabular-
ies and ontologies in transformations from relational databases to
RDF. Unfortunately, such tools completely lack support for trans-
forming geospatial data into RDF and thus any special handling of
POIs. On the other hand, Extract-Transform-Load (ETL) tools like
GDAL/OGR18, GeoKettle19 or FME Workbench20 can manage the
unique characteristics of spatial data, but offer no RDF support.
9http://sdi4apps.eu/
10https://www.openstreetmap.org/
11http://linkedgeodata.org
12http://dbpedia.org
13http://www.geonames.org/
14http://wikimapia.org/api/
15http://foursquare.com/
16https://developers.google.com/places/
17https://www.w3.org/TR/r2rml/
18http://www.gdal.org/
19http://www.spatialytics.org/projects/geokettle/
20http://www.esri.com/software/arcgis/extensions/datainteroperability/key-features/spatial-etl
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Regarding geospatial data conversion to RDF, Geometry2RDF21

can access data in a few geospatial formats and turn their geome-
tries into RDF [13] with the NeoGeo vocabulary22; this not compli-
ant with GeoSPARQL and ignores thematic attributes. The generic
DataLift platform23 offers RDF transformation with a user-selected
ontology, and its module GeomRDF [6] supports GeoSPARQL-
compliant geometries. Over relational data in Oracle Spatial and
Graph, custom RDF views24 can be created via SQL queries or non-
standard mappings (e.g., in R2RML) and the generated RDF triples
get physically stored in the DBMS. Instead, GeoTriples [7, 8] ex-
tends mapping languages R2RML and RML with new constructs.
Although not adhering to a specific geospatial vocabulary, it sup-
ports the GeoSPARQL standard. Compared to our software Triple-
Geo, GeoTriples lacks access to as many input formats, it does not
support reverse transformations, and its scalability against large
geodatasets may suffer because of the complexity of RMLmappings.
GeoTriples also lacks any specific support for transformation of
POI data (e.g., classification schemes). But mappings generated by
GeoTriples can be used by the Ontop-spatial extension [3] of the
Ontology-Based Data Access system Ontop [11]. This way, users
can view their data sources virtually as linked data through on-the-
fly GeoSPARQL-to-SQL translation on top of relational databases
using ontologies and mappings. This is similar in spirit with Spar-
qlify25 employed in the LinkedGeoData portal, and does not require
any transformation of data. To the best of our knowledge, software
utilities for converting geospatial features into RDF resources have
certain limitations, and certainly none has been suggested so far
for direct transformation of POIs to RDF and vice versa.

3 POI DATA MODEL
In this Section, we propose a rich, vendor-agnostic, and extensible
OWL ontology26 for representing a large and diverse set of POI char-
acteristics in RDF, as identified in existing POI datasets and models.
Figure 1 illustrates a graph with the main classes and properties of
the ontology27. The top-level classes include:

• POI is the main class for POI features and is modelled as
subclass of a spatial Feature in GeoSPARQL, thus directly
inheriting properties regarding their geospatial location. It
supports multiple geometric representations, and the type
of each geometry (e.g., centroid, navigation point, map pin,
boundary) may be specified as well. In addition, the model
enables specification of point locations according to the Ba-
sic Geo (WGS84 lat/long) Vocabulary28, as well as altitude
information (which is not yet included in GeoSPARQL).

• POISet represents a collection of POIs (i.e., a POI dataset).
• POISource: A source of POI data (e.g., a commercial vendor)
may be specified using a Universal Resource Identifier (URI),
title, homepage, detailed description, license, logo, etc.

• Classification: A classification scheme that is applied to a
POISet and assigns a category (e.g., restaurant, bar, theater,

21http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/technologies/151-geometry2rdf
22http://geovocab.org/doc/neogeo
23http://datalift.org/
24https://docs.oracle.com/en/database/oracle/oracle-database/12.2/rdfrm/rdf-views.html
25https://github.com/AKSW/Sparqlify
26Web Ontology Language (OWL): https://www.w3.org/2001/sw/wiki/OWL
27Our complete POI ontology in OWL is available at https://github.com/SLIPO-EU/poi-data-model
28http://www.w3.org/2003/01/geo/

etc.) to each POI. Classification may be possibly hierarchi-
cal, having its terms (i.e., categories, subcategories, etc.) in
multiple levels with a parent-child relationship. We do not
enforce a common, predefined classification to POI data com-
ing from diverse sources, but allow each dataset to retain its
own. Matches or conficts of POI categories may be resolved
during POI data integration in the Linked Data domain.

• Term can be used to specify a category at any level in a clas-
sification scheme. Typically, each major category (e.g., food)
may be specialized into several subcategories (e.g., restaurant,
fast food, pizza, etc.).

• AccuracyInfomodels accuracy assessment for the properties
of POI, including the type of accuracy metric (e.g., positional,
geocoding, thematic) and its value.

• Address information for a POI may have diverse representa-
tions per region or country. The model is flexible to accom-
modate addresses with street name, house number, postal
code, intersection of streets, as linear reference along a road,
etc., or even unstructured addresses as string literals.

• Contact information may include phone number(s), fax, and
email address(es), each with an optional characterization
(e.g., mobile, direct line for phones).

• Name class supports various naming conventions for POIs:
abbreviations, acronyms, phonetic transcriptions, translit-
erations, etc. as well as characterizations for language and
type (e.g., official, alternate, brand, historical).

• LicenseInfo covers license information (attribution, title, URL)
either for a POI source or for media objects related to POIs.

• Media may refer to photo, video or audio associated with a
POI and models their URL, MIME type, and creation times-
tamp, as well as their license.

• PaymentMethod indicates whether and which particular
forms of payment are accepted (e.g., cash, credit/debit card).

• Rating may be used to model the ranking of a POI (with
properties such as the rating value, the number of votes, the
rating scale, etc.), but also its priceTier as perceived by users.

• Service indicates whether and what type of service is offered
in a POI (e.g., parking, wifi, air conditioning, room service).

• SourceInfo provides information on the data source, includ-
ing the time this POI was retrieved and its original identifier.

• TimeSlot can capture when a POI is open (openingHours) or
mostly visited (popularHours) in various temporal granular-
ities (months, weeks, weekdays, hours), and can also handle
special cases (e.g., operation in public holidays).

Overall, this ontology aims at capturing properties of POIs that
are commonly found in different types of POIs in various domains
and applications. Other domain or application-specific properties
for particular types of POIs (e.g., for representing electric vehicle
charging stations) may still be added, extending the ontology to fit
the particular needs of a given application.

4 TRANSFORMING POIS TO/FROM RDF
POI data may be available frommultiple sources as files, maintained
in DBMSs, retrieved via Web APIs, etc. Providers may also offer a
wealth of POI data assets, possibly employing diverse geometry rep-
resentations, different attribute schemata, and possibly assigning
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Figure 1: Main classes and object properties in the POI ontology.

categories to POIs under varying classification schemes. However,
by transforming original POI data into an RDF representation ac-
cording to a consistent, extensible, and rich ontology, all challeng-
ing tasks involved in POI data integration can be addressed using
Linked Data technologies. As explained next, we have customized
TripleGeo, our software that can turn any type of geospatial data
into RDF [9], towards transformation of conventional POI profiles
according to the proposed ontology. However, it should be stressed
that transformation is actually a two-way process that should also
allow reverse transformation of linked POI data back into conven-
tional POI formats, thus enabling existing products, systems, and
services to exploit the integrated POI datasets. Next, we present the
main features of TripleGeo29 as well as its deployment on multiple
concurrent threads for advanced efficiency.

4.1 Transformation to RDF
Figure 2 illustrates the flow diagram employed by TripleGeo for
transforming geospatial POI features into RDF triples. A configura-
tion file sets properties that control the various stages of transfor-
mation: how input source will be accessed, which data to retrieve,

29Java source code, full documentation, and examples at https://github.com/SLIPO-EU/TripleGeo

what geometric representation to apply, whether geometries must
be georeferenced in another system, the output format, etc.

Input data may be obtained from vector geospatial files either
structured (e.g., ESRI shapefiles, CSV, GeoJSON, GPX) or semi-
structured (in XML, GML, or KML), as well as from geospatially-
enabled DBMSs (IBM DB2, Microsoft SQL Server, MySQL, Oracle
Spatial, PostGIS, SpatiaLite, or ESRI personal geodatabases). Con-
nectors to source data are used to provide access to geometric
features: this is possible either via JDBC drivers for DBMSs or the
GeoTools library for vector geographical files.

Especially for structured geospatial data from files or retrieved
from a DBMS, a feature iterator consumes each input record (i.e.,
all attributes concerning a POI) and converts its geometry into a
suitable representation according to user specifications. TripleGeo
supports not only points, but all OGC primitives for 2-dimensional
geometries like (Multi)Point, (Multi)LineString, or (Multi)Polygon,
and even complex geometries (Geometry Collection). Optionally,
reprojection of geometries between coordinate reference systems
(CRS) is possible thanks to the integrated GeoTools library.

Regarding thematic (i.e., non-spatial) attribute values (e.g., name,
address, contact information) of a POI feature, TripleGeo emits
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Figure 2: Processing flow for transformation to RDF with TripleGeo.

properly formatted literals as defined in user-specified attribute
mappings. Such mappings can be prescribed in two alternative
representations that both reflect the underlying POI ontology. In
particular, an RML mapping [4] specifies rules concerning how
input data will be represented in RDF as triples. This is achieved
by specifying TriplesMap constructs, which control the generation
of RDF nodes, i.e., URIs or blank nodes or literals, according to
constants, references to original attribute values or templates, as
well as based on cross-references between TriplesMaps. Although
RML offers enough expressiveness for defining mappings, it may
seem cumbersome for regular users without RDF skills. So, we
introduced a simplified, custom mapping in YAML format that offers
full support for mapping POI attributes specifically to our ontology.
During transformation, TripleGeo identifies the YAML mapping
defined for a given attribute and accordingly creates RDF triples.

In case that input data follows a (possibly multi-level) classifi-
cation scheme into categories, subcategories, etc. assigned to POI
features, this can be also utilized in the transformation by assigning
URIs to these categories. The classification scheme is also trans-
formed into triples (according to the hierarchical structure defined
in the POI ontology), and TripleGeo introduces extra links between
a POI and its respective category URI under this scheme.

TripleGeo assigns an HTTP URI to each processed feature ac-
cording to a configurable scheme, so that data owners have enough
flexibility and full control over creating and managing their own
POI identifiers, while still adhering to a uniform format. Names-
paces for classes can also be defined in the configuration and used
in the transformation according to the mappings. The default URI
pattern is based on Universally Unique Identifiers (UUID), i.e., 128-
bit long numbers generated on-the-fly during transformation. We
avoid reusing original POI identifiers or assigning auto-incremented
integer values, since UUIDs can almost safely serve as unique iden-
tifiers without the need of a central registration authority or other
means of coordination among involved parties. TripleGeo intention-
ally avoids creating blank nodes by inheriting the URI of the main
feature to all its object properties with a suitable suffix based on the
property name (e.g., /address, /contact, etc.). Note that TripleGeo
does not check for duplicate POI identifiers either in the input data
or in the assigned URIs. Instead, we intentionally opted to separate

POI transformation from POI deduplication, allowing possibly mul-
tiple identifiers for the same POI to be created (e.g., a POI available
from multiple providers), which may be interlinked at a later stage.

TripleGeo can perform RDF transformation in various modes:
(1) GRAPH materializes a disk-based Jena model30 for collecting

all triples transformed according to YAML mappings, and even-
tually exports them to a file. This persistent, queryable RDF
graph essentially maintains disk-based indices regarding the
produced triples; once triples for each POI are added, the re-
spective indices must be updated, which gets costlier with time.
Even though the Jena model does not support spatial data types
and operations, POI geometries can be stored as GeoSPARQL-
compliant WKT literals without problems.

(2) STREAM applies in-memory conversion with prompt creation
of triples per input POI feature, making use of the high perfor-
mance writers of the Jena RIOT API. By iterating over each POI
feature, every attribute (geometry, thematic, classification) is
transformed into triples according to a given YAML mapping to
the ontology. Once transformation of a given POI is completed,
the resulting triples can be readily written to the output file.
The only restriction is their serialization, because not all RDF
formats are suitable for streamlined writing to files, except for
N-Triples/N-Quads.

(3) RML mode applies attribute mappings specified in RML lan-
guage on each input feature. For integration with TripleGeo, we
modified the RML processor31 to work in a streaming fashion.
Instead of materializing triples in a SAIL repository, which may
easily become a bottleneck when transforming large datasets,
we created a wrapper over RML performers for iterating over
each input POI and producing transformed triples according
to user-defined RML mappings. In case of cross-referencing,
execution of any dependent TriplesMap is triggered by the ap-
propriately defined parent TriplesMap. Each batch of triples is
generated in-memory and serialized to a file before the iterator
fetches the next POI.

(4) XSLT is exclusively used against semi-structured (GML, KML,
XML) geographical data and metadata. Parsing is based on XSL

30https://jena.apache.org/
31http://rml.io/
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style sheets that define application profiles for transforming
the input data into RDF triples.
Serialization of output triples is performed by the Jena API into

several triple formats (RDF/XML, N-Triples, N3, TTL, etc.).
An extra CSV file is issued after transformation, containing ba-

sic attributes per POI (URI, name, category, and geometry) for its
inclusion in an Identifiers Registry. This is a directory of identifiers
created and associated with key metadata about each POI processed
within the POI integration lifecycle. It can serve as a lookup service
for retrieving basic information about a previously imported POI
or for searching for already registered POIs and their identifiers.

Finally, metadata and statistics compiled during transformation
are written into a JSON file. This metadata concern execution time,
input and output size, number of transformed values per attribute,
and the spatial extent of the dataset.

4.2 Reverse Transformation from RDF
TripleGeo supports reverse transformation of RDF POI data into con-
ventional geospatial formats (currently, CSV and ESRI shapefiles)
and works according to user-specified configuration settings. Input
RDF data may be obtained from files with standard serializations.
Multiple RDF files may be specified (with the same serialization
and conforming to the same ontology) in order to reconstruct a
single geospatial file with all (geometric and thematic) information.
In effect, TripleGeo creates an intermediate disk-based Jena model
that stores all input triples (equivalent to theGRAPHmode in trans-
formation). In the configuration, the user must specify a SELECT
query in SPARQL that will be used to retrieve results (records) from
the constructed model according to the underlying POI ontology.
Once query results are returned, a feature iterator consumes each
one and recreates a record from it; each attribute specified in the
SELECT clause becomes a column in the resulting file. Reprojection
of geometries into another coordinate reference system (CRS) is
also an option. In case that data types (e.g., date or numeric) are
known for RDF literals, the respective attributes may be suitably
defined in the resulting file; otherwise, these are stored as strings.

Admittedly, there exists an impedance mismatch in this reverse
direction, given that the POI ontology is semantically more expres-
sive than conventional POI schemata. Presently, we have tested
TripleGeowith SPARQL specifications that can successfully retrieve
the same attributes as in original POI data given for transformation
to RDF. But generally, POI attributes, relations and metadata in RDF
representation will be richer than those supported by conventional
file formats, as we intend to explore this issue in the future.

4.3 Extra Features
Since its inception, TripleGeo has been implemented to be standards-
compliant. This mostly concerns RDF geometries, fully compliant
with the OGC GeoSPARQL standard (and indirectly to other OGC
standards). Moreover, transformation of INSPIRE-aligned data and
metadata32 is also supported [10], thus abiding by the EU Directive
for interoperable Spatial Data Infrastructures across Europe.

TripleGeo can accept mappings to other ontologies as well as
diverse classification schemes. Beside the ontology in Section 3, we
have also performed transformations of POIs using a data model
32EU INSPIRE Directive 2007/2/EC, https://inspire.ec.europa.eu/

for representing places33. Although this collaborative model differs
a lot from our own ontology, it is rather straightforward to spec-
ify suitable mappings and perform transformations. Furthermore,
using TripleGeo we have launched a free download service34 that
offers global POI data extracted from OpenStreetMap and trans-
formed into RDF format. To select features representing POIs from
the entire OSM database, a custom filtering has been applied in-
volving tags that signify POIs of various categories. In the resulting
triples, a data property is generated for each key under the Open-
StreetMap namespace, hence retaining all original tags according to
the native OSM data model, while also creating resolvable, machine-
readable URIs per POI.

We are currently working on extending TripleGeo towards semi-
automatic workflows to assist and guide users in creating attribute
mappings for new datasets.We have built aMachine Learning utility
that suggests new mappings from a corpus of previously specified
ones, available from the various use cases of POI data handled so
far. This utility also analyzes the contents of each attribute in a new
POI dataset, based on its data type (string, numeric, etc.), formatting
(e.g., phone numbers, postal codes), as well as the presence of special
characters. Users can then verify or modify these recommended
mappings through a graphical interface before applying them for
transforming their POI data into RDF.

5 SCALABLE TRANSFORMATIONWITH POI
DATA PARTITIONING

Assuming no relationships between POIs, each one may considered
as an autonomous entity with its own properties, so its generated
triples have no links to other POIs. In this case, a large POI dataset
may be partitioned into a number of disjoint subsets, each one ide-
ally having an equivalent number of POIs. Then, a separate RDF
transformation task may be employed for each partition. Naturally,
the optimal number of partitions highly depends on the available
resources of the cluster or the standalone machine that must per-
form the RDF transformation. Of course, more partitions mean that
each task has to convert a smaller chunk of the original data, but
this may not always lead to an overall faster execution. Typically,
POI data partitioning may be carried out in several fashions:

• Evenly, by splitting the dataset into a specified number of
partitions, each one holding the same number of POIs.

• Hash-based, by employing a hashing algorithm over a parti-
tioning key (e.g., the URIs). A good choice of hashing algo-
rithm can evenly distribute POIs among partitions, giving
partitions of approximately the same size.

• Spatially, by uniform grid, quadtree, or other tessellations.
• Thematically after grouping POIs by a specific attribute, e.g.,
per category or country of origin. In this case, ranges of
values may be defined (e.g., over dates), and each such range
may be used to map data into a separate partition.

Depending on the strategy, partitioning may yield subsets of
varying sizes. For instance, distrubution of POIs in cells of a grid
partitioning may not be even, as the original data may be skewed
(e.g., more dense POIs in urban areas). But, in any case, each chunk
may be processed separately and produce its own RDF output.
33https://schema.org/Place
34http://download.slipo.eu/results/osm-to-rdf/
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Multi-threaded Execution. As a first approach towards scalable
RDF transformation, we have adjusted TripleGeo to run concur-
rently in multiple Java threads. This method requires a preprocess-
ing step that subdivides the input data and stores each partition
into a separate file having the same schema as the original. For each
such chunk, a separate thread of TripleGeo can be launched for its
transformation, which proceeds totally isolated from the rest. Each
thread abides by the same configuration settings, e.g., applies the
same classification scheme, attribute mappings, namespaces, etc.,
as if it worked alone. Finally, these partial results may be merged
into a single one, or loaded into a triple store to create a unified
RDF representation for the original data.

Parallelized Execution over Spark. For parallelized POI data
transformation in cluster infrastructures, we have also extended
TripleGeo to use Apache Spark35 and GeoSpark36 as its underly-
ing partitioning mechanism. As an distributed, cluster-computing
framework, Apache Spark provides APIs in many programming lan-
guages, offers a stack of datamanagement libraries (SQL, DataFrames,
and Datasets), while also supporting machine learning, graph pro-
cessing, and streaming applications. Spark abstracts the data in
Resilient Distributed Datasets (RDD), an immutable distributed col-
lection of data elements that can be stored in memory or disk across
a cluster of machines. Besides, GeoSpark [14] is an extension of
Spark core and supports spatial data types, indices (R-tree, Quadtree,
grid, etc.), and topological operations at scale. Enriched with a set
of out-of-the-box Spatial RDDs (SRDDs), it can efficiently load,
process, and analyze large-scale spatial data across machines.

This parallelized extension for TripleGeo is available for several
spatial formats. In case of GeoJSON and CSV, input POI information
is parsed into a Spark DataFrame that contains all original attributes.
Information from ESRI shapefiles is read using GeoSpark into a
Spatial RDD, which represents records along with their geometries.

This parallelized process has two stages. First, (Geo)Spark loads
the input dataset and partitions it into a user-specified number of
partitions. The input data is read and stored in partitions on HDFS
accessible by different worker nodes. In the second step, each Spark
worker performs an independent transformation task by invoking
its own TripleGeo instance against its assigned subset of the POI
data. In particular, each input POI instance from the Spatial RDD is
mapped to a collection of (key, value) pairs (one key per attribute
value) and this is forwarded to TripleGeo for RDF transformation
according to the global configuration. Note that there is no need
for reshuffling data between workers, since partial transformation
results produced by each worker come from disjoint chunks of the
original POI data and have no associations to other POIs.

As our experiments is Section 6 testify, employing multiple con-
current threads or Spark-based partitioning for transforming dis-
joint pieces of large POI datasets can offer orders of magnitude
performance gains compared to standalone execution and testifies
the robustness and scalability of TripleGeo.

6 EXPERIMENTAL EVALUATION
Next, we report results from a comprehensive validation of the
transformation process against open POI data extracted from OSM
35https://spark.apache.org/
36http://geospark.datasyslab.org/

and stored in various spatial repositories37. Based on this study, we
have also setup a SPARQL endpoint38 for searching and querying
according to our ontology against an RDF graph of open POI data
in Europe, available under the Open Database License (ODbL).

6.1 Experimental Setup
We extracted all POI data across Europe from the OpenStreetMap
(OSM) database, including their detailed geometry (i.e., not just
long/lat point locations, but also polygons, linestrings, etc.) and all
their tags as a list of key-value pairs. Based on the tags available for
each OSM element, we categorized the extracted records according
to a two-tier classification scheme39 with 15 categories and 167
types (subcategories). OSM elements not qualifying as POIs to any
term in this classifcation scheme were ignored (e.g., road segments).
The filtered POI dataset contains 7,447,697 records over Europe and
was stored in a PostGIS database. We specified extra filters with
SQL queries over the set of OSM tags in order to isolate particular
attributes concerning POIs as listed in Table 1. This base real dataset
D (which occupies about 1.9GB on disk in CSV format) is referred to
as OSM 7.4M POIs in the sequel. For scalability tests over Spark, we
synthetically generated extra datasets, by replicating base dataset
D several times (×2, ×4, ×8, ×16). For other efficiency tests, we have
also taken a subset S of the base OSM dataset by randomly select-
ing one million records (coined as OSM 1M POIs). Details on the
contents of all datasets are listed in Table 2. To check performance
when accessing POI data from various spatial repositories, apart
from PostGIS, we have also stored dataset S in three other formats:
CSV, ESRI shapefile, and a commercial geospatially-enabled DBMS
(hereafter referred to as X-DBMS).

Experiments regarding standalone and multi-threaded execution
of TripleGeo were conducted on a Virtual Machine (VM) running
Debian Linux 3.16.0 on an Intel Core i7-3820 CPU with 4MB cache
at 2.2 GHz. This VM was given 8GB RAM, 1GB swap, 4 (virtual)
CPU cores and 300GB disk space. All data was locally available on
the VM, so no network delays were involved.

37In the context of the SLIPO project, we have transformed several POI datasets available from
commercial vendors for Europe, but these results cannot be published due to copyright.
38http://geoknow-server.imis.athena-innovation.gr:11480/pois.html
39Used in https://github.com/MorbZ/OsmPoisPbf for extracting POIs from OSM into CSV format.

Table 1: POI attributes extracted from OSM.
Basic Address Contact Other
OSM id street phone international name
name number fax category
type zipcode email country

geometry city webpage opening hours

Table 2: POIs in the real and synthetic OSM datasets.
Dataset Type Total #POIs
D : 7.4M POIs original 7,447,697
S : 1M POIs sample 1,000,000
D × 2 synthetic 14,895,394
D × 4 synthetic 29,790,788
D × 8 synthetic 59,581,576
D × 16 synthetic 119,163,152
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Figure 3: Performance of POI transformation (single-thread executions).

Tests with TripleGeo over Spark were conducted on top of a
YARN/Hadoop cluster consisting of 7 processing nodes using an
HDFS cluster for storage (with a disk capacity of 1.2TB); by default,
the HDFS block size is 64MBs. Each node has Intel® Xeon® CPU
E5-2650 v3 @ 2.30GHz and can allocate 7 vcores and 15GB RAM
for running YARN tasks. All nodes in the cluster are connected on
a rack-local network with a Gigabit Ethernet switch and run Linux
Ubuntu 16.04 LTS with Hadoop 2.9, Spark 2.2.3, and GeoSpark 1.1.2.

Each experiment was executed in cold runs, i.e., invoking Triple-
Geo immediately after all caches of the operating system are cleared,
the DBMS is re-started (if used), and no data is loaded in main mem-
ory. We primarily measure the end-to-end clock time (in seconds)
required to transform a given dataset to RDF or the cost of reverse
transformation to de facto POI formats. For transformation modes
of TripleGeo that work in a streaming fashion (i.e., STREAM and
RML), we also provide results regarding the average throughput,
i.e., the rate in triples/sec at which TripleGeo generates RDF triples
as it progressively consumes the input dataset. Execution tests on
top of Spark also indicate the data partitioning time.

6.2 Performance Results
Standalone POI Transformation to RDF. Figure 3(a) depicts
the overall cost for transforming one million POIs to RDF with
TripleGeo, when each POI includes a varying number of attributes,
as listed in columns in Table 1. Clearly, the more the attributes
available per input record, the more the resulting RDF triples; hence,
the cost should increase linearly with the number of attributes
(note the logarithmic scale along the time axis). This is exactly the
case with the RML mode, since the RML performers employed in
transformation must examine each attribute value irrespective of
NULL values. But notice that costs for STREAM and GRAPHmodes
seem practically unaffected when dealing with 12 attributes instead
of 8, i.e., when also examining contact-related attributes, because
such values are missing frommost POI records. As YAMLmappings
are not applied at all in such cases, this saves in processing cost.
The STREAMmode is manifestly the most efficient, at least an order
of magnitude faster than GRAPH, and even more faster than RML
for any number of input attributes. The only case where RML fares
slightly better than GRAPH is when only the four basic attributes
are examined. Clearly, TripleGeo can efficiently handle a varying

number of thematic attributes per record with linear (worst-case)
or sublinear (amortized) increase in transformation cost.

The next test compares performance of TripleGeo in its various
modes and also against GeoTriples [8]. This concerns increasing
volumes of input POIs in CSV format, up to one million records
involving all 16 attributes in Table 1. As Figure 3(b) indicates, the
cost grows linearly with the input size in all three transformation
modes. AlthoughGRAPH involves a disk-based RDF repository that
collects all triples before issuing any results, it is still better than the
RML mode of TripleGeo for such moderate data sizes. This is due
to cross-referencing among properties in the POI ontology (Fig. 1),
hence dependent RML mappings (e.g., for names or contacts) get
triggered by their parent ones (i.e., for POIs). In effect, each input
POI is examined against every defined RML mapping, which is un-
necessary in case of missing attribute values. Instead,GeoTriples [8]
optimizes the RML processor and extends it with inherent support
for geometries, hence its better performance. Nevertheless, under
its STREAM mode TripleGeo is always superior by far, as it han-
dles each record in isolation and, thanks to its lightweight YAML
mappings, it can promptly emit the resulting triples.

Figure 3(c) plots the performance of TripleGeo in STREAMmode
when the same input data (1 million POIs) is retrieved from different
repositories: either de facto file formats (CSV, ESRI shapefile) or
two geospatially-aware DBMS (PostGIS, X-DBMS). Clearly, there
is some divergence in performance amongst repositories, yet this
is unrelated to transformation. Indeed, when input data comes
from CSV or PostGIS, execution proceeds rapidly. In contrast, the
JDBC driver for X-DBMS provides records at a much slower pace,
hence the significant slowdown in performance. When input is in
shapefile format, each record must first be parsed by the GeoTools
library, which almost doubles the cost compared to CSV. So, the POI
data repository affects the rate at which input records are accessed
and has a strong impact on overall cost.

Overall, these experiments testify that TripleGeo is orders of mag-
nitude performance gains compared to its original release [9], and
can efficiently transform large POI datasets faster than GeoTriples
even without any sophisticated data partitioning schemes.

Scalability with Multiple Execution Threads. These experi-
ments are applied against the much larger OSM dataset of 7.4M
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Figure 4: POI transformation when deploying TripleGeo on multiple execution threads.

POIs to examine performance of transformation with TripleGeo on
multiple concurrent threads. As discussed in Section 5, input data
is split into several equi-sized parts (in these tests, up to 16 CSV
files) in advance, and a separate thread per subset transforms it to
RDF under the same mode (GRAPH, STREAM, or RML).

Figure 4(a) illustrates the time (in logarithmic scale) needed to
complete transformation of the entire dataset with a varying num-
ber of concurrent threads. Observe that STREAM is consistently
an order of magnitude faster than RML mode, and almost two or-
ders of magnitude faster than GRAPH mode. It is no wonder that
transformation cost drops with extra threads for STREAM and RML
modes, as each thread handles separately a smaller chunk of the
data and takes out the most of available system resources (memory,
CPU). Of course, this performance gain gets less pronounced when
invoking more than 8 threads, as the system cannot resourcefully
sustain all of them concurrently and context switching inevitably
ensues. Instead, the cost of applying GRAPH mode increases with
multiple concurrent threads. This is primarily due to high I/O inter-
action, as each thread in this mode has to concurrently maintain its
own disk-resident RDF model with frequent updates on their ever
growing indices. To verify this effect, we also tested the GRAPH
mode with consecutively triggered threads, i.e., one at a time and
not concurrently, thus not competing each other over system re-
sources. Figure 4(b) confirms that such a scheduling can boost
performance of GRAPH mode, as RDF models in Jena are created
faster for smaller input chunks. Even then, the disk-based GRAPH
mode still trails behind the two streaming ones (STREAM, RML), as
these latter work entirely in main memory. However, the GRAPH
mode may still be useful in practice, since a persistent RDF graph
is created for free and can support SPARQL queries.

Figure 4(c) depicts the average throughputwhen TripleGeoworks
in streaming modes (STREAM, RML). As expected, throughput
is increasing with extra threads, but the effect diminishes when
reaching the ceiling of available system resources (in our setting,
when more than 8 threads are used). Again, the STREAM mode
readily applies YAML mappings tailored for each attribute and can
generate up to 715,000 triples/sec. RML is much less efficient since
it has to iterate over all RML performers in order to identify the
one with the RML mapping suitable for a given attribute value.

Scalability with Execution over Spark. This set of experiments
examines the scalability of TripleGeo when running in STREAM
mode on top of a Spark/GeoSpark cluster infrastructure.

Figure 5(a) depicts execution time by fixing the data size D (7.4
million POIs in CSV format) and varying the number of its partitions.
Each partition is assigned to a processing node for transformation.
Clearly, the worst case is when no partitioning is involved, so a
single node has to consume and transform the entireD. By doubling
the number of partitions, the transformation cost drops by half, as
each data chunk is processed separately and no shuffling is involved.
Of course, partitioning incurs some overhead, but this depends on
the input size and not on the number of partitions. This test clearly
shows the “scale-up” efficiency of TripleGeo and its ability to handle
large datasets in a distributed setting making the best utilization of
the available system resources (HDFS, CPU cores).

In the next experiment, we measure execution time by varying
both the data size and the number of its partitions. More specifically,
we synthetically increase the data size (multiples of original dataset
D in CSV format) and equally increase the number of partitions,
so that their ratio is fixed in each test. As Figure 5(b) testifies, the
partitioning cost escalates for growing data sizes, since it takes
more time to split and distribute larger datasets. But afterwards,
transformation tasks can run in parallel for each partition at their
assigned nodes. As each data partition has the same size, their trans-
formation ends up almost at the same time (we plot the maximum
duration among transformation tasks in all nodes). Obviously, the
impact of partitioning gets more pronounced for larger datasets,
while transformation cost is practically stable for equi-sized data
chunks. Note that the overall cost increases sublinearly with the
data size, provided that more system resources are allocated. Indeed,
processing dataset D × 16 (issuing over 2 billion RDF triples) can be
carried out with only a ×2.5 increase in execution time compared
to D, underscoring the “scale-out” capabilities of TripleGeo.

Reverse Transformation from RDF.We consider RDF data pre-
viously transformed from the original OSM data concerning a vary-
ing number of attributes (i.e., the process examined in Figure 3(a)).
To assess the efficiency of reverse transformation, the linear plots
in Figure 6 show the time (in logarithmic scale on the left y-axis)
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Figure 5: Scalability of TripleGeo when executed on top of Spark.
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RDF with varying numbers of attributes.

required to reconstruct POI data in CSV and ESRI shapefile formats
from those RDF triples. As indicated with the bar plots, the more
the attributes (i.e., extra columns in Table 1), the more the generated
RDF triples. In reverse transformation, it takes more time to restore
the triples into a disk-based RDF model and subsequently recon-
struct records by linking all available properties per POI entity in
the model. But, even with 16 attributes per POI, a CSV dataset is
restored in almost 7.5 minutes, even though it has to compile this
information over 14.5 million triples. Conversion to shapefiles costs
an order to magnitude more, because theGeoTools library must first
create a feature record, assign the respective attribute values along
with validity tests on geometries, before storing this record into
the shapefile. We have also compared the reconstructed files with
the original OSM data, verifying that we received the same number
of records with no extra NULL values in any attribute. All this
confirms that the reverse transformation functionality in TripleGeo
can swiftly reconstruct original POI data with no information loss.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a generic, vendor-agnostic, and extensi-
ble model for representing POI data as linked geospatial data. This
model covers a rich set of attributes in de facto POI assets, allows
representation of complex POI metadata and relations, and adhers
to well-established standards (RDF, GeoSPARQL). Furthermore, we
developed transformation software TripleGeo that can access POI
data from various spatial repositories and return their RDF represen-
tation according to the suggested model along with user-specified
attribute mappings and classification schemes. In a comprehensive
evaluation against millions of POIs in real and synthetic data, their
transformation is concluded in a few minutes, confirming the ro-
bustness and versatility of our software and testifying its scalability
to handle large POI datasets. Employing data partitioning schemes
and parallelization in modern cluster infrastructures, TripleGeo has
confirmed its ability to transform massive collections of POIs and
generate the resulting RDF triples with minimal latency.

In the future, we plan even more improvements. First, our model
can be extended with additional properties regarding POI data evo-
lution and provenance. We also wish to accommodate information
about Areas of Interest (e.g., shopping or entertainment hotspots)

and POI associations (e.g., a shop within a shopping center). Fi-
nally, making estimates about suitable partitions based on input
samples without user interaction, taking into account available
system resources (CPU, memory, disk), as well as statistics over
data characteristics (spatial distribution, number of attributes, etc.)
would be also advantageous for even more advanced scalability.
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