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ABSTRACT
We introduce a framework for online monitoring of moving ob-
jects, which takes into account their evolving trajectories and
copes smoothly with fluctuating demands of multiple continuous
queries for limited system resources. This centralized scheme ac-
cepts streaming positional updates from numerous objects, but it
only examines recent trajectory segments with expectedly higher
utility in query evaluation, shedding the rest as immaterial. We
focus on adaptive processing under extreme load conditions, opting
to retain salient trajectory segments and possibly sacrifice smaller,
frequently observed paths in favor of longer, distinctive routes. We
propose heuristics for incremental, yet approximate, query evalua-
tion in order to provide up-to-date traffic analytics using windows
that abstract particular regions and time intervals of interest. Finally,
we conduct a comprehensive experimental study to validate our ap-
proach, demonstrating its benefits in result accuracy and efficiency
for almost real-time response to trajectory-based aggregates.
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1 INTRODUCTION
Nowadays, a wide spectrum of monitoring applications collect, ex-
change, process, and analyze large volumes of geostreaming data.
From tourist guides to logistics, in geosocial networking, online
advertising or wildlife preservation, Location-based Services (LBS)
have to manage positional updates from numerous moving objects
(people, animals, vehicles, merchandise, etc.). Typically, continu-
ous range [3] or k-nearest neighbor queries [11] focus on spatial
relationships regarding the current location of moving objects.
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Yet, evolving trajectories of such moving objects also offer pre-
cious information by dynamically tracking their updated motion
paths across time. As numerous objects relay their locations fre-
quently (e.g., every few seconds), massive positional data is being
accumulated in a streaming fashion. But keeping historical, ever-
growing trajectories of all objects in main memory so as to quickly
answer related queries is hardly affordable. User requests mostly ex-
amine their recent portion via sliding windows [14], e.g., trajectory
segments over the past hour. The bulk of trajectory information
may still be enormous with scalable numbers of objects; even worse,
any attempt to process it in its entirety may be overwhelming. Not
only must existing trajectories be constantly updated with fresh po-
sitions, but continuous queries should offer timely response before
the next batch of updates arrives. Apart from possibly obsolete or
inconsistent results, a series of such delays may have a chain effect
that could rapidly exhaust limited system resources (CPU, memory),
so performance may steadily degrade and ultimately collapse.

In this paper, we introduce a self-regulated, adaptive mecha-
nism for managing huge volumes of evolving trajectory data. A
centralized server maintains and utilizes only selected trajectories
when evaluating continuous spatiotemporal queries so as to avoid
exceeding its system capacity. Our approach is inspired by load
shedding techniques [1, 7, 12, 16, 19, 21] proposed for effective,
yet approximate processing over data streams, by controlling how
much input is admitted to the system according to its estimated
Quality of Service (QoS). Their key idea is to make the most out
of available resources, sacrificing certain portions of the incoming
tuples without ever processing them, in order to provide answers
as timely and accurate as possible to continuous queries.

Our focus is particularly on continuous queries over dynamically
updated trajectory segments that can provide traffic analytics in
real time. Employing sliding windows, typical online aggregates
like “Report average speed along each road over the last 15 minutes”
or “Estimate travel time per road segment over the past half hour” are
valuable for road surveillance, real-time shortest path computation,
etc. Of course, accurate vehicle counts per segment are impossible
to support even without shedding, since not all actually circulating
vehicles may be monitored. Still, such geostreaming samples can
rate the congestion level (e.g., low, heavy, jam) of roads in comparison
with historical records, assess traffic intensity in areas (e.g., city
center), etc. Such traffic analytics cover particular regions of interest
(e.g., roads, city zones), each one stipulating its own functional, filter,
and window specifications. Our methodology could also handle
other types of network-restricted movement: aircrafts flying along
air corridors, packets transmitted via routers in computer networks,
etc., provided that similar analytics are requested.

We stress that our approach specifically concerns trajectory-
based query evaluation, and not simply streaming locations as in
previous techniques on spatially-aware shedding [3, 4, 9, 10, 13].
We cannot randomly eliminate a portion from the incoming batch
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of positions at any given time, as this will break the sequence in
the maintained trajectories. Instead, we opt to discard trajectory
segments less useful in evaluating traffic analytics so as to reduce
processing cost and keep in pace with the arrival of fresh posi-
tions under intensive load situations. For example, if a vehicle is
moving on a road where many other trajectories are maintained,
then its trace may be dismissed from the server to make savings in
processing cost, since the rest can provide enough information on
average speed or travel time. In tandem, aborting trajectories should
not put query evaluation at risk, i.e., no query must be left unan-
swered because relevant data is dropped. Had data reduction been
applied close to the sources (i.e., objects reporting their positions
less frequently), it would mostly affect data quality (i.e., trajectory
simplification) and save in bandwidth rather than improve response
latency and scalability on the server side, as we aim in this work.

Intuitively, our method resembles a throttling valve that regu-
lates the flow of geostreaming data into the system. To the best
of our knowledge, this is the first work on load regulation and
adaptive processing over streaming trajectories of moving objects.
Our contribution can be summarized as follows:
• We introduce a self-regulated, lightweight scheme for effec-
tive treatment of evolving trajectories, using heuristics to
evict those of presumably minor utility in query answering.
• We propose a simple, yet effective model for predicting load
conditions from dynamically updated QoS statistics.
• We employ succinct synopses to keep digested aggregates
about trajectories even if they have been temporarily shed.
• We empirically demonstrate that such a mechanism can
provide approximate, yet reliable response in real time to
continuous aggregates over streaming trajectories.

The remainder of this paper proceeds as follows. Section 2 sur-
veys related work. Section 3 presents the system model. Section 4
introduces an adaptive mechanism for keeping load close to system
capacity when calculating trajectory-based aggregates. Section 5
reports performance and quality assessment results from a compre-
hensive empirical study. Section 6 concludes the paper.

2 RELATEDWORK
Various load shedding techniques have been employed in streaming
and geostreaming applications. In both cases, the critical questions
are when, where and how much load to shed if latency deteriorates
because of high arrival stream rates.

Among stream processing engines (SPE), pioneering shedding poli-
cies for Aurora [19] suggested a precomputed set (Load Shedding
Road Map) of possible query plans enhanced with data dropping
operators. In case of excessive load at runtime, it finds the best
plan such that the system utility loss due to the shed input is mini-
mized. Although random dropping can be fairly successful, taking
tuple semantics into account can provide even better results. In
STREAM [1], random samplers were carefully inserted along query
plans to minimize the maximum relative error at output, employing
probabilistic bounds over windows of tuples received by aggregates.
Since arbitrary tuple-based load shedding can cause inconsistency
in windowed aggregates, the approach in [20] suggested sacrific-
ing entire windows of tuples while keeping other windows intact.
Based on rate-monotonic scheduling properties, shedding in [7]

attempts to minimize the total error in query results caused by data
reduction. Control theory techniques like [5, 21] utilize closed-loop
control with feedback to provide better result quality at less delay
compared with previous shedding policies. Besides, load shedding
was also applied to aggregates and mining functions in [12]. DILoS
[15] combines query scheduling and load shedding policies when
classes of queries have differing levels of priority. Sketches were
proposed in [17] to collect processing times per tuple and update a
cost model for shedding in query operators. Data triage [16] sum-
marizes excessive data into synopses instead of dropping it, so as to
improve query results. In a similar manner, we maintain synopses
of inactive trajectories (i.e., those having their positions shed) to
improve the quality of approximate traffic analytics.

Load shedding has been also applied in a geostreaming context.
Concerning mobile continuous queries, LIRA [3] suggests that the
monitored area be divided into regions of roughly the same density
like a quadtree, and collecting statistics per region so that load shed-
ders are placed in each region with variant shedding percentages.
Continuing this line of work, MobiQual [4] employs shedding of
both data updates and queries according to QoS specifications. Clus-
terSheddy [13] performs shedding with data mining techniques.
Its key idea is to consider clusters of objects which move in a sim-
ilar way, and then ignore updates near the centroids of clusters.
SOLE [10] utilizes the notion of significant objects, i.e., those partic-
ipating in many windows and are kept intact. In contrast, positions
are dropped from objects that are not deemed relevant in answering
many queries. This is analogous to our concept of active trajecto-
ries, which marks cohesive traces (not single locations as in [10])
most useful in computing traffic analytics. Specifically for spatial
queries in microblogs, the platform in [9] is able to adjust its load
according to location distribution and dynamically changing query
parameters. To the best of our knowledge, there is no prior work
on load shedding from streaming trajectories of moving objects.

Some SPE applications specifically concern traffic analytics. In-
foSphere Streams [2] aims at scalability and offers various traffic
aggregates. GeoInsight [6] supports continuous spatiotemporal
queries and ad hoc analytics for traffic prediction. However, these
platforms completely lack any load shedding capabilities.

3 SYSTEM MODEL
Next, we present the application setting, we rigorously formulate
the problem, and outline our processing scheme.

3.1 Application Setting
Without loss of generality, we assume a LBS application that can
monitor up to N objects (e.g., vehicles) equipped with geoposition-
ing devices. Objects are moving across the edges of a fixed network,
e.g., roads in a city or a country. This network is represented as a
graph (V , E)with directed edges in E (e.g., road segments with a spe-
cific traffic flow) connecting pairs of vertices from V . Positional up-
dates are relayed as tuples ⟨o,p, τ ⟩. Each objecto reports its actual lo-
cation p frequently enough (say, every few seconds), but not always
at a fixed rate; reporting frequency may vary among objects. Thus,
the spatiotemporal motion of each object oi is represented with
its trajectory Ti = {⟨oi ,p1, τ1⟩, ⟨oi ,p2, τ2⟩, . . . , ⟨oi ,pc , τc ⟩}. Clearly,
this sequence of positions is ordered by timestamp up to current
time τc , like the vehicle traces in Fig. 1.
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Upon arrival to a centralized server, these locations constitute a
single input geostream. We assume no stream imperfections, i.e., no
delayed, disordered or missing messages, hence all streaming tuples
are considered properly timestamped at the time of their admission.
This fresh data is temporarily buffered and then given to processing
periodically every δ time units (e.g., every 5 seconds). Each such
execution cycle is marked by current timestamp τc . At cycle τc ,
the server must recognize the trajectory segments traversing each
network edge in order to update traffic analytics (e.g., average
speed) within deadline δ before the next cycle starts at τ ′c = τc + δ .

A set ofM continuous queries need to make computations over
trajectories and not on individual locations. Each query is registered
as q : ⟨f ,R,ω, β, τ0⟩ at time τ0. Unless explicitly suspended, query
q remains valid indefinitely and must return fresh results according
to its specifications. Typically for sliding time-based windows [14],
each query prescribes its own temporal range ω of the window that
slides every β time units. Not all queries get evaluated concurrently
due to possibly varying β slides, whereas theymay concern different
ω ranges. Each query q specifies a function f for computing a
traffic aggregate (like average speed, travel time, etc.) over evolving
trajectory segments collected within its range ω.

In addition, each query q declares a spatial region R of interest;
e.g., this may be a buffer polygon around the edge(s) in E monitored
by query q. Qualifying trajectories report their segments located
within region R anytime during the past ω time units. For instance,
in a road surveillance application, R may represent the carriage-
way of a road; depending on its length and importance to traffic, R
may only cover particular edges or lanes in a specific direction of
traffic flow. In the example shown in Fig. 1, a traffic controller may
register query q1 to estimate average speed across the westbound
carriageway between the red dashed lines. Results will be computed
from trajectory segments (in green solid lines) collected from vehi-
cles o2, o4, and o5 that traversed region R during the past ω = 30
minutes; estimates are refreshed every β = 5 minutes. Without
loss of generality, we consider every R is wide enough to account
for GPS discrepancies, so that each incoming position gets indis-
putably assigned to a single region. Alternatively, a state-of-the-art
map-matching algorithm [8] may be used to incrementally match
positions with underlying network edges. However, we stress that
this is an orthogonal problem and does not affect our proposed
methodology for trajectory-aware load adaption.

3.2 Problem Formulation
Suppose a centralized server that monitors N objects moving on
a network and evaluates a workload ofM continuous queries that
compute traffic aggregates. At current execution cycle τc , let ui
denote the cost (in CPU cycles) for updating trajectory of object oi
with its recently arrived positions and also identify spatial regions
Rj of interest that oi has traversed. Suppose that c j is the CPU
cost for evaluating a given query qj at cycle τc , i.e., examining all
trajectories evolving along its region Rj during window range ωj
and calculating a requested aggregate (e.g., average speed). Thus,
the cumulative actual load L for updating all trajectories (Lu ) and
calculating response to all queries (Lc ) at execution cycle τc is:

L = Lu + Lc =
N∑
i=1

ui +
M∑
j=1

c j (1)

Figure 1: Trajectories of vehicles moving on a road network

But typically, a centralized server has limited processing capa-
bilities. We abstract this limitation by allocating to the monitoring
process a preset capacity C , i.e., the maximum amount of CPU cy-
cles in which results must be returned at the current execution
cycle. Thus, at each execution cycle τc ,

L ≤ C (2)
must hold so that allocated resources are not exhausted. Ideally,
trajectory updates and query evaluation must be concluded within
strict period δ . But occasionally, a sudden surge in the amount of
incoming locations (e.g., when most of N objects are on the move
and report too often) cannot be processed on time for all pending
queries. So, it could take more than δ units to finish processing at
current cycle τc . This may cause incoming tuples queueing up at the
admission point, further delays in successive execution cyles, and
eventually the system will become unbalanced, failing to provide
traffic aggregates from the most fresh object traces on time.

To overcome this possible burden in processing, we suggest
choosing a certain amount s of trajectories to shed from the system.
In effect, this choice classifies trajectories into:

– active trajectories that will be updated and subsequently
used in query evaluation, as opposed to

– inactive trajectories that get temporarily suppressed (i.e., not
updated by fresh positions) and ignored in evaluation.

Note that this distinction does not depend on whether an object
is stationary or not, but on whether its trajectory will be among the
set T of those available (“active”) for probing in query processing.
Rendering some trajectories inactive will certainly make savings in
execution cost, so that actual load L may be kept below capacity
according to (2). However, shedding trajectories randomly may
have serious impact in the quality of answers. Instead, we should
rather retain trajectories with greater utilization to queries in a
semantic fashion. Active trajectories should be those that assist most
in timely answering as many queries as possible. Intuitively, longer
and more fresh traces traversing many edges of the graph should
be prioritized. In addition, queries involving a very low number
≤ ξ trajectories should also take precedence, as they cannot afford
to lose any of their current sample traces; otherwise, results may
be inaccurate or even impossible to compute. So, a trajectory Ti
required by any such query should be preserved.
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Figure 2: Load fluctuations w.r.t. system capacity C

Obviously, the extra overhead La incurred by this readjustment
should satisfy La ≪ Lu + Lc in order not to overspend precious
resources on adaption. Still, fluctuations of observed load L =
Lu +Lc +La around capacityC are inevitable. In addition, it may oc-
casionally happen that too many trajectories are shed, and L drops
well below allocated capacity C . Thus, in order to avoid triggering
this adaption process in situations where L has only a small devia-
tion from C , we set a tolerance θ expressed as a small percentage
% of C . As illustrated with the horizontal cyan rectangle in Fig. 2,
parameter θ defines a saturation band (C − θ ,C + θ ), which sets
acceptable levels for actual load L close to capacity C , so that adap-
tion may not be unduly activated. Most importantly, adaption must
be decided proactively to prevent overloading or underloading, i.e.,
before the next cycle τ ′c actually starts. This decision can only be
based on expected load L′ at τ ′c , which may be estimated according
to recent load indications that reflect the Quality of Service (QoS),
as illustrated in Fig. 2. Thus, we prescribe that load adaption must
be triggered when

|L′ −C | ≥ θ . (3)
Our goal is to get fair estimates for expected load L′ at next cycle

τ ′c that can lead to suppressing or supplementing a suitable amount
±s of trajectories, such that actual load L at τ ′c ideally is

C − θ < L < C + θ . (4)

Due to volatility in motion patterns and variety in query specifi-
cations, overloads or underloads may still happen occasionally (a
few spikes just above and below the saturation band as in Fig. 2).
The system must also check for unnecessarily inactive trajectories.
Yet, when not many objects are on the move (e.g., off-peak hours),
it is normal that the system may be underloaded as condition (2)
prescribes, so adaption is off and no trajectories are shed.

3.3 System Overview
Figure 3 illustrates the processing flow of the proposed system,
which accepts streaming positions from N objects moving on a
network graph (V , E) and must provide response toM continuous,
trajectory-based aggregate queries. In order to adapt in abrupt load
deviations, this system consists of the following basic modules:
• A Spatial Index covers the entire monitored area so as to
quickly match each fresh position to a region of interest
(query). All such regions are indexed in a regular grid G.
• TrajectoryManager accepts region-aligned positions from the
monitored objects and updates their trajectories accordingly.
It also maintains digested information on their motion, i.e.,
lightweight synopses of the successive regions they recently

Figure 3: System Architecture

traversed, and collects useful statistics on the amount of
trajectories observed per region.
• Query Processor evaluates all active queries at current cycle
τc by making use of partial aggregates eagerly computed
on-the-fly by the Trajectory Manager while updating object
traces. The resulting traffic analytics are returned to users
for enabling shortest path calculations, notification alerts,
map visualization, archiving, etc.
• Load Monitor examines trends in the QoS time series L of
actual loads over recent execution cycles and anticipates
overload or underload situations at next cycle τ ′c .
• Load Adapter regulates the amount of objects that will be
allowed to update their trajectories at cycle τ ′c . This decision
is based on expected loadL′ as estimated by the LoadMonitor
with respect to system capacity C , and dictates whether a
certain portion of trajectories must be included or excluded
from processing at τ ′c .

4 ADAPTIVE MECHANISM
At every cycle τc , execution proceeds in successive stages, each
employing one or more of the aforementioned modules:

i) Trajectory update is carried out by the Trajectory Manager
assisted by the underlying Spatial Index.

ii) Query evaluation is the job of Query Processor thanks to
partial analytics obtained from the Trajectory Manager.

iii) Load adaption is performed through the Load Monitor and
Load Adapter modules.

In the sequel, we analyze each stage in detail.

4.1 Trajectory Update
For each incoming position p from a monitored object o, the system
must first identify the edge in the network graph where o currently
moves along. In our case, this corresponds to a query q with spatial
region q.R responsible to monitor traffic over (or including) this
edge. Even in case that this position is very close to a graph vertex
(e.g., crossroads), the correct edge is the one most similar to the
orientation of instantaneous velocity ®v of object o, i.e., the vector
connecting its previous pprev to current location p.

For enabling fast identification of candidate regions (those close
to p), the entire area of interest is subdivided by means of a uniform
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grid partitioning G. Indeed, grids allow fast retrieval, especially for
points or frequently changing locations [18]. Grid granularity д
controls the number of cells per axis, subdividing the entire area into
д×д equi-sized square cells. In a preprocessing step, each region R is
trivially assigned to those cells it overlaps with. At runtime, position
p is hashed against the grid and the cell containing p is found. After
searching over regions indexed in that cell, p is associated with
a single query q whose region q.R contains p and its direction of
traffic flow is most similar to that of velocity ®v .

Velocity ®v and query identifier q are appended as extra attributes
to each fresh stream tuple, which becomes ⟨o,p, ®v,q, τ ⟩. Subse-
quently, this information is used to update the status of its tra-
jectory, which of course concerns active trajectories only. However,
for each object (either active or inactive), Trajectory Manager tem-
porarily holds its last reported position pprev , so that its velocity ®v
can be calculated, as well as any transition into another region.

In addition, we maintain a synopsis for every evolving trajectory,
either active or inactive. Essentially, this synopsis keeps account of
the spatial regions that an object o has traversed. In fact, an item
in such a synopsis identifies the respective query qj that monitors
such a region, as well as the specific time interval [t in, tout ) that
o spent along qj .R, without keeping any position coordinates. For
instance, in the example setting in Fig. 1, vehicle o1 has recently
reported positionsp1, . . . ,p9 at respective timestamps τ1, . . . , τ9. So,
its trajectory T1 (in blue color) passed from three roads monitored
respectively by queries q3, q2, and q4. Consequently, its synopsis is
S1 = {⟨q4, [τ7, τ9)⟩, ⟨q2, [τ3, τ7)⟩, ⟨q3, [τ1, τ3)⟩} with its items listed
in reverse chronological order frommost recent traversal to the oldest.
Only the first item in the synopsis is subject to updates, as the upper
bound of its time interval may change with a fresh position. Once
this object enters a regionmonitored by another query, a new item is
appended to the front of the synopsis. For clarity, here we assumed
that an object emits its position once it moves into another region.
In practice, this is hardly realistic, given the asynchronous fashion
in reporting positional updates. Anyway, time indications for such
transitions can be fairly approximated via linear interpolation on
the server side. As time goes by, obsolete items in synopses may
be discarded depending on window specifications of the respective
queries. For instance, if query q2 specifies a window range ω2 and
currently τc − ω2 > τ7, then the respective item from synopsis
S1 may be purged. Overall, the series of such items per object
summarize its timespan over the successive query regions it has
passed. Approximate estimates from synopses can be readily used
to enrich query results (travel time, average speed, etc.) in case that
original locations have been dropped.

Finally, at each execution cycle τc , auxiliary statistics are col-
lected on the number of trajectories traversing spatial region qj .R
of every query qj , j = 1, . . . ,M registered in the system. As ex-
plained in Section 4.3.3, such counts update a histogramH , which
can assist in avoiding inactivation of trajectories; otherwise, some
queries may be driven to starvation.

4.2 Query Evaluation
Since Trajectory Manager maintains enhanced positional tuples
⟨o,p, ®v,q, τ ⟩, it can readily estimate some elementary traffic analyt-
ics concerning sucessive trajectory segments per object. In general,

once object o exits from region qj .R monitored by query qj , it enters
into qk .R monitored by another query qk . Then, at the trajectory
segment retained for o during its traversal from region qj .R, we can
assign two pointers: one pointing to the first location of o observed
in qj .R, and another one to its last reported location just before
exiting from qj .R. Therefore, if object oi has recently traversedm
regions (i.e.,m queries), then its trajectory Ti will point out to 2m
such locations. We adopt a lazy evaluation policy, in which pointers
ofTi are adjusted during the trajectory update stage upon transition
into another spatial region.

Thanks to these pointers, a catalogue K can be also maintained
in the Query Processor, essentially listing for each query qj the
trajectories recently passing through its region qj .R at successive
time intervals. This data structure is updated at each execution
cycle, pointing to the most fresh traces of objects. When evaluating
a query qj , catalogue K promptly indicates all involved objects.
For each such object oi , the aforementioned pointers can access its
trajectory Ti and collect precomputed simple aggregates (average
speed, travel time, etc.) concerning region qj .R. Thus, answering to
query qj reduces to a trivial aggregation (e.g., average or maximum)
over those singleton values collected from all active trajectories
along its region qj .R during its window range qj .ω.

4.3 Load Adaption
We assume that the monitoring process is allocated with a fixed
capacity C (in CPU cycles) per execution cycle τc . However, com-
pleting its task within a period δ is often impossible, given the
large number of moving sources, the fluctuating (and occasionally
escalating) arrival rate of fresh positions, as well as the demands
of continuous queries awaiting for incremental response. At each
cycle τc , the Load Monitor (Fig. 3) receives QoS measurements con-
cerning: cost Lu for updating trajectories; Lc for evaluating queries;
and any overhead La charged in the previous cycle for adapting the
load at the current one τc . Given the scarcity in system resources,
cumulative actual load Lmay exceed capacityC , sometimes by far, if
all incoming data is examined exhaustively. Then, the Load Adapter
must regulate the input, so that the system can still provide reliable
answers to queries without risk of thrashing.

4.3.1 Alternative Policies. Load shedding applies to situationswhere
multiple continuous queries vie each other for limited system re-
sources in order to get low-latency response [19]. Shedding does
not alter query specifications but affects the amount of data given
to processing. In our setting, given a single stream of positional
updates, the Load Adapter should be placed close to the admission
point so as to regulate the data flow as early as possible (Fig. 3).

Once the system needs adjustment, several alternative policies
may be considered with regard to geostreaming data:
i) Position-level adaption: The system randomly chooses to keep
each incoming position if it exceeds a probability, regardless
of the referenced object. So, a given percentage of locations is
retained to adjust the load. But such random elimination can
yield irregularly sampled trajectories, possibly deviating a lot
from original traces.

ii) Window-level adaption: As in [20], entire window states are
purged, so trajectories get not updated at the respective in-
tervals and not probed by any query. Apart from disrupting
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(a) Overload (b) Underload (c) In saturation band

Figure 4: Cases for triggering load adaption at next cycle τ ′c

the sequence in trajectories, this policy also means that some
queries are not evaluated at all at some cycles.

iii) Trajectory-level adaption: Certain trajectories are selected and
temporarily dismissed. This is the most preferable choice in
our setting, as it aims to preserve integrity of retained (ac-
tive) trajectories, instead of sparse locations or missing entire
subsequences as in the previous two policies.

So, we suggest retaining a suitable portion of active trajectories
at each execution cycle, enough to answer all queries, ideally within
strict deadline δ . But picking at random which trajectories to main-
tain would yield highly skewed query results. Not all of the selected
trajectories may correspond to the spatial regions actually specified
by queries, hence some answers may be based on insufficient data;
even worse, some queries could be left unanswered. Consequently,
we do not consider this naïve random policy. In contrast, similarly
to other approaches over data streams [4, 9, 15, 19], we opt for
semantic load adaption. Crucially, our method is trajectory-aware as
it keeps object trajectories according to their (presumably superior)
utility in query answering. At next cycle τ ′c , only active trajectories
get updated and take part in evaluation. Each incoming location
p that refers to an inactive trajectory Ti may be dropped without
consideration, except for the case p indicates that this object has
just entered into another spatial region. Marking such transitions is
important in maintaining the synopsis for each object (Section 4.1).
Indeed, once trajectory Ti becomes active again and used in query
evaluation, its recent motion must have been recorded without
gaps, even in the condensed form of its synopsis Si .

4.3.2 Triggering Load Adaption. At runtime, the Load Monitor
can make a fair guess on L′ at next cycle τ ′c . We employ a linear
regression model over actual loads L(t) at recent execution cycles
t ∈ (τc − βmax , τc ] to estimate a best-fitting trendline:

L′(t) = σ · t +ψ (5)

where σ signifies its slope andψ the intercept. In statistics, the least
square error linear fit can be obtained with coefficients

σ =

∑(t − t̄)(L(t) − L̄(t))∑(t − t̄)2 and ψ = L̄(t) − σ · t̄ (6)

where t̄ is the average (a timestamp value) over recent cycles in
an interval equal to the greater window slide βmax among all M
queries. This choice intends to take into account loads potentially
fluctuating due to the burden of evaluating a different mix of queries
at each cycle because of their varying slides β . Then, L̄(t) is the
average over the respective actual loads. Once coefficients are com-
puted with (6), expected load L′(τ ′c ) can be estimated from (5), as
exemplified in Fig. 2 considering actual load in 9 most recent cycles.

In order to attain a load within (or at least very close to) the
saturation band at next cycle τ ′c , we estimate the amount s of tra-
jectories to shed or supplement proportionally to the number n
of active trajectories utilized at current cycle τc . Clearly, s should
depend on the relative difference ofC and L′, as illustrated in Fig. 4,
no matter where current load L is w.r.t. the saturation band. Hence,
s is not fixed, but instead takes fluctuating values (in number of
trajectories) according to expected surplus or deficit in load.

The adaption process is triggered in situations of significant load
overflow or underflow with respect to system capacity C . More
specifically, we distinguish the following cases:

– Overload occurs when expected load L′ is above the satu-
ration band at τ ′c , i.e., L′ ≥ C + θ , as illustrated in Fig. 4a.
Then, the system is expected to be overwhelmed with more
data than it can possibly process on time, so the method
must keep less active trajectories for evaluating queries. But
how many trajectories to shed from those n currently active?
Conservatively, this value s should be derived in proportion
to n trajectories, so that load at τ ′c would not exceed the
band:

s =

⌈
C + θ − L′

L
· n
⌉

(7)

The negative sign of the result in (7) means that s out of the
n currently active trajectories must be dismissed.

– Underload occurs once expected load L′ is below the band at
τ ′c , i.e., L′ ≤ C − θ as illustrated in Fig. 4b, also provided that
there are some trajectories previously inactivated, which
may now become active again. This latter condition means
that there is room for admitting extra trajectories and thus
improve the quality of answers. How many trajectories to
add into those n currently active is dictated by the fact that
load at τ ′c should not fall below the band:

s =

⌊
C − θ − L′

L
· n

⌋
(8)

The positive sign of the resulting integer value in (8) indicates
that s more trajectories should be activated.

– When C − θ < L′ < C + θ , load L′ is expected within the
saturation band at τ ′c (Fig. 4c). In this case, no adaption is
necessary and the subset of active trajectories is not mod-
ified, since load L′ is expected at normal levels. Even so,
trajectories may start or finish at any time due to chang-
ing motion patterns, hence actual load L may occasionally
fluctuate despite any adaption decisions.

– It may happen that expected load L′ is below the band at
τ ′c , i.e., L′ < C − θ , while all trajectories are active (i.e.,
none dismissed). Then, no adaption is necessary, as less and
less objects are on the move (e.g., roads at night hours) and
load normally falls. Due to self-regulation, adaption will be
triggered once overload is noticed again.

Note that a stepwise adaption scheme could be used (loosely
inspired from [19]), repeatedly increasing or reducing load by a
fixed step s until the system becomes stable, i.e., L ≤ C . In future
work, we plan to study a more sophisticated cost model involving
operator (i.e., traffic aggregate) selectivity, per tuple processing
time and actual load L; however, a proper choice for s may be tricky
due to mutability of motion patterns across time.
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4.3.3 Semantic Selection of Trajectories. We choose trajectories to
become active at next cycle τ ′c according to heuristics:

Heuristic #1: Insufficient samples. A trajectory Ti contributing to
queries with few other active trajectories (“samples”) should be
preserved. Intuitively, not many trajectories are active along such
a query q, because objects traverse infrequently its region or have
become inactive. Potential inactivation of Ti would worsen or even
make impossible a response to q. For instance, if all trajectories
along a road are suppressed, no traffic aggregates can be computed.

Selecting a cutoff limit ξ to denote insufficient samples per query
is based on statistics in the Trajectory Manager. An equi-width
histogramH holdsb buckets over the various values concerning the
number of currently active trajectories per query. Then, the cutoff
limit ξ for few samples is the maximum value of the first b-tile inH .
For example, with b = 5, we examine the first quantile containing
the lowest 20% of trajectory counts, and ξ is the maximum of these
count values. So, this cutoff limit can distinguish queries with very
small number (≤ ξ ) of trajectories utilizable in processing, so as to
avoid their inactivation.

Heuristic #2: Trajectory ranking can be also used to favor trajectories
traversing multiple spatial regions and spanning longer intervals.
Such a ranking could be based on the amount of regions that each
object has traversed and the interval of its presence along each one.
This can be easily achieved thanks to the maintained trajectory
synopses (Section 4.1), by considering a weighted sum of their
most recent traversals across spatial regions, i.e., the queries that
monitor traffic therein. Instead of just relying on the last query most
recently affected by a trajectory, an ageing-aware scoring scheme
could be employed to rank trajectories according to their presumed
utility in query answering. A standard weight a ∈ (0, 1] is used to
progressively weaken older traversals, i.e., over queries previously
affected by a given trajectoryTi . Thus, at current cycle τc , trajectory
Ti may be assigned an adjusted score of

ρi =
1
∆τi
·
|Si |∑
k=1

ak · (toutk − t ink ) (9)

by only probing its maintained synopsis Si . Items in Si are accessed
in reverse chronological order; duration of each item (i.e., region
traversed by trajectoryTi ) is normalized by the total duration ∆τi of
all items in Si . For example, if a = 1

2 and object o1 in Fig. 1 relays its
positions regularly every 60 sec, from its synopsis S1 we can derive
its current score ρ1 = 1

480 · ( 12 · 120 + ( 12 )2 · 240 + ( 12 )3 · 120) ≈ 0.28.
Clearly, scores are derived from compact trajectory segments (over
queries q4, q2, q3 in this example), and not sparse locations.

Intuitively, score ρi quantifies the expected utility of trajectory
segments from object oi in query answering. Ageing also prevents
trajectories from alternating between active and inactive states,
by reflecting their motion over longer intervals. Once scores are
computed for every trajectory, this heuristic picks up trajectories for
activation starting from top ranking ones until it reaches the target
amount n of active trajectories for next cycle τ ′c . The higher the
attained score ρi , the greater the chance that trajectoryTi becomes
active. If Ti turns inactive, it stops being updated, but its existing
segments (prior of shedding) can still be used in query computations
until their expiration from the respective sliding windows.

Algorithm 1: TrajectoryActivation (#trajectories n, #buckets b)

1 State: T = {Ti : trajectory maintained for moving object oi }
2 State: K = {∀ query q, {oi : object oi traversed q during q .ω }}
3 Output: U = {u : ∀ object oi , u=1 if oi is active; u=0 if inactive}
4 U.resetAll() //Initially, mark all trajectories as inactive
5 H ← ∅ //Histogram (with b buckets) of trajectory counts per query
6 for each query q ∈ K do
7 H.insert(K[q].size()) //Put trajectory count for q into histogram

8 ξ ← max({values in bucket H[1]}) //Cutoff limit based on first tile
9 for each query q ∈ K do
10 if K[q].size()≤ ξ then // Prioritize queries of ≤ ξ samples
11 for each object oi ∈ K[q] do
12 if n > 0 then
13 U[oi ] ← 1 //Activate trajectory Ti for next cycle
14 n ← n − 1

15 B ← ∅ //Priority queue with trajectories ranked by their utility
16 for each object oi ∈ T \ {oj : U[oj ] = 1} do
17 ρi ← RankTrajectory(oi ) //Calculated by Eq. (9)
18 B .insert(⟨oi , ρi ⟩) //Trajectory rankings in descending order

19 while (n > 0) ∧ (B , ∅) do
20 U[B .top()]← 1 //Pick trajectories with top scores ...
21 B .pop() //...until target count n is reached
22 n ← n − 1
23 return U //Trajectories to utilize in query evaluation at next cycle

As listed in Algorithm 1, semantic selection applies Heuristic #1
trying to preserve selected trajectories with distinct motion patterns
as active in bitmapU and avoid starvation of queries (Lines 6–15).
Then, the score-based Heuristic #2 activates extra trajectories inU
by their rankings (Lines 16–23) without considering again those
already qualifying to the first rule (Line 17). Resulting bitmapU
(Line 24) determines which trajectories will be active at cycle τ ′c .

5 EMPIRICAL EVALUATION
In this Section, we report results regarding performance and approx-
imation quality from a comprehensive evaluation of the proposed
load adaption framework over large synthetic trajectory data.

5.1 Experimental Setup
To the best of our knowledge, there is lack of publicly available
trajectory data with massive, frequent position updates from a
large number of moving objects. Hence, we generated synthetic
trajectories simulating vehicles that move on the road network of
greater Athens (area ≈250 km2). Objects are moving at varying
speeds during their course, but each time according to the average
speed (values assigned according to traffic studies) of the road edge
they currently traverse. After calculating shortest paths for up
to 1,000,000 vehicles between nodes chosen randomly across the
network, position samples were taken every 10 seconds along each
such path (the longest trip took 4060 sec). Additional samples were
taken once a vehicle makes a turn into another road, so as to capture
a possible change in speed. Instead of letting all objects start moving
at τ=0, their trajectories were time-shifted to occur within a period
T=4200 sec. According to this scheme, at τ=0 no vehicle is moving,
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0 1000 2000 3000 4000
0

10

20

30

40

50

60

timestamp (sec)

L
o

a
d

 (
C

P
U

 c
y
c
le

s
)

 

 

Lpeak

C=33% Lpeak

band θ=5%

N=500K

N=1000K

No LS

(a) θ = 5%Lpeak

0 1000 2000 3000 4000
0

10

20

30

40

50

60

timestamp (sec)

L
o

a
d

 (
C

P
U

 c
y
c
le

s
)

 

 

Lpeak

C=33% Lpeak

band θ=10%

N=500K

N=1000K

No LS

(b) θ = 10%Lpeak

Figure 6: Load adaption at fixed capacity C = 33%Lpeak with varying object count N

but progressively more and more start circulating. At τ=2100 sec,
each vehicle is halfway on its journey; by then, system load is
expected to soar as all vehicles are on the move. Eventually, as more
and more objects reach their destination, load is diminishing. As a
varying number of vehicles is moving at each time, this scenario
attempts to simulate a peak effect in traffic conditions, especially
during rush hours along major arterials in the network.

Regarding continuous queries, each one corresponds to a par-
ticular road and monitors its average speed. The spatial region of
a query covers the carriageway of a road, i.e., a buffer polygon in
a specific direction of traffic flow; hence, two distinct queries are
used for bidirectional roads. Each query specifies its own window
(ω, β) assigned according to road classification, as listed in Table 1.
E.g., motorways are more important and more susceptible to traffic
fluctuations that must be promptly detected, thus they are given
shorter range and slide values compared with the rest. For smooth
window maintenance at runtime, we set ω

β = 10 in all windows,
and the various β values are multiples of a basic period δ = 30
seconds between successive execution cycles.

Algorithms were implemented in C++ and experiments with
diverse parameter settings were simulated on an Intel Xeon E5-
2660 CPU at 2.20 GHz and 96GB RAM. All processing takes place in
mainmemory. Load is shown across time, as the stream is consumed
and continuous queries get evaluated; all other performance metrics
are averages over execution cycles where all queries had to provide
response. Execution cycles occur every δ = 30 sec, as stipulated
by the minimum slide step β in queries. Table 2 lists experiment
parameters and their ranges; default values are shown in bold.

5.2 Performance Results
In a preliminary test, before considering any load adaption, we
searched for a suitable granularityд for the spatial grid. As indexing
concerns only the query regions, Figure 5 shows average cost of

Table 1: Query specifications

Road class #Queries Total length (km) ω (sec) β (sec)
1: motorway 2 4.1 300 30
2: highway 21 62.2 600 60
3: primary 575 557.8 900 90
4: secondary 1173 689.9 1200 120

query evaluation per cycle without load adaption (No LS). With
a finer granularity, the monitored area is subdivided into more
and smaller cells. Although memory footprint increases, each cell
covers fewer query regions, incurring reduced evaluation costs. In
the sequel, all tests were conducted with a 500 × 500 grid, so as to
reduce query evaluation overhead and focus mainly on adaptivity
to load fluctuations.

The first set of adaption tests (Fig. 6) were conducted with a
fixed capacity C = 33%Lpeak (in CPU cycles). Lpeak reflects the
maximum load ever observed in the system, namely when it had
to manage 1000K objects without load adaption (respective plot
No LS is illustrated for comparison). Forcing the system to remain
at a steady state when the maximum load can reach a value three
times higher, is a stress test for our adaption method. In general, the
greater the tolerance θ , the less frequently adaption is invoked. In
monitoring 1000K objects, load ascends more sharply and crosses
the saturation band earlier in time, hence adaption is also triggered
earlier. This means that the system can afterwards make better
estimates with regression about the expected load and choose a
suitable subset of active trajectories. This is muchmore evident with
a relaxed θ = 10%, where the load by and large fluctuates within the
band in the period where most of trajectories are on the move. With
a narrower saturation band (θ = 5%), adaption seems to fare better
with 500K objects; sudden spikes are fewer, although slightly higher.
With more (1000K) objects, less deviations are observed in actual
loads, but more spikes fall out of the band. However, spikes are
inevitable: recall that our windowed queries specify differing slides
β (Table 1), hence a varying number of queries must be answered at
each iteration. Such spikes occur exactly when allM queries must
be given a fresh response, just after several iterations where smaller
subsets of queries get evaluated at a diminished cost. In these cases,
predicting the expected load is less successful due to the extreme
mutability in query workload.

Table 2: Experiment parameters

Number N of moving objects 500K , 1000K
Number M of continuous queries 1771
Grid granularity д per axis 100, 125, 200, 500
System capacity C (as %Lpeak ) 33%, 50%, 67%
Tolerance θ (as %Lpeak ) around C 5%, 10%
Number b of buckets in histogram 5, 10, 20
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Figure 7: Load adaption against trajectories of N = 1000K objects for varying values in capacity C and tolerance θ
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Figure 7 plots actual loads for varying values in capacity C and
tolerance θ over trajectories of N = 1000K moving objects. When
C = 33%Lpeak , adaption achieves its best results, as load practically
remains restricted within the band with very few exceptions. Even
when spikes do occur due to the varying mix of queries, their devi-
ation from the band is almost negligible. But when more capacity
is allowed, more and greater spikes are observed. Curiously, the
situation gets worse when more capacity C = 67%Lpeak is given.
In that case, adaption seems to offer very little compared to no
adaption at all (No LS). The reason is that, at most iterations, load
normally remains close to the band when less thanM queries are
processed, so no adaption is required. But, when the system must
respond to allM queries, it cannot predict their excessive demands
with regression, hence it allows a greater number n of active trajec-
tories. The loss in trajectory information is less, but cost escalates
beyond the band. Clearly, this is a limitation of the regression model
currently employed, which we plan to fine tune in future work.

In all plots concerning load, notice the fluctuations below the
saturation band approximately after τ = 3000 sec. The cause is not
load adaption, but the varying number of queries that require re-
sponse at each execution cycle. Figure 8 illustrates how many times
adaption was triggered (cumulatively since τ = 0) while consuming
the input stream with tolerance θ = 5%, but varying numbers N
of objects and allowed capacities C . Initially, there is no need for
adaption, as load remains below saturation. As soon as the system
begins to experience overloading, adaption is repeatedly triggered
to balance the load (and also correct underloading situations). Of
course, the more the monitored objects and the less the allowed

capacity, the more frequently adaption gets triggered. But, once
many objects reach their destination (when τ > 3000 sec), less tra-
jectories need maintenance and load normally starts to fall. Then,
load adaption is not needed anymore.

Figure 9 depicts the average cost for each stage over execution
cycles where allM queries receive response (i.e., the most intense
situations). The overall cost represents the time for updating all
(active) trajectories, answering all pending queries, as well as the
adaption overhead (when applied). As intended, this overhead re-
mains low enough, compared to the other two stages that perform
user-requested computations. Updating trajectories takes less than
evaluating queries, mainly because a significant portion of tra-
jectories is occasionally dismissed, yielding considerable savings
to resources. Query evaluation is more expensive because all M
queries must be responded, so auxiliary data structures must be
frequently accessed. Clearly, the total cost grows linearly with the
number N of objects, since the query workload is fixed. But, even
with N = 1000K objects, average cost is less than 18 seconds per
cycle, well in advance from the next cycle (every δ=30 sec) treating
another mix of queries over more fresh data.

Regarding cutoff limit ξ for designating insufficiently small sam-
ples of trajectories for queries, Fig. 10 illustrates tests with different
number b of buckets in the histogram that maintains trajectory
counts. Recall that designating a suitable ξ value gives a clue about
the magnitude of such a small sample. For example, when b = 5, we
pick the first quantile which indicates that 20% of the roads have
less than ξ trajectories passing through them and cannot afford
reducing their samples without harming the resulting traffic esti-
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Table 3: Error in speed estimates w.r.t. exact measurements
(a) Error with different system capacity

Capacity C avg (km/h) stdev (km/h)

50%Lpeak 0.665 1.382
67%Lpeak 0.346 1.436

(b) Error by road length

Length (km) avg (km/h) stdev (km/h)

< 0.2 0.679 1.517
0.2 – 0.5 0.648 1.200
0.5 – 1.0 0.660 1.239
1.0 – 2.0 0.753 1.501
> 2 0.909 2.023

(c) Error per road class

Road type avg (km/h) stdev (km/h)

1: motorway 1.319 3.431
2: highway 1.423 3.181
3: primary 0.667 1.255
4: secondary 0.666 1.272

mates. The less the number of buckets, the more trajectories will be
activated because of Heuristic #1. Fairly enough, the vast majority
of trajectories are activated thanks to their estimated utility scores
(Heuristic #2). This is desirable, as it keeps longer trajectories span-
ning wider time intervals along multiple spatial regions of interest.
Hence, a single trajectory may contribute its partial analytics to
multiple queries. Also note that a small percentage of active trajec-
tories are fresh ones, i.e., objects that are starting to move and are
chosen to be retained as active.

5.3 Quality of Approximate Traffic Estimates
In order to measure accuracy of approximate traffic estimates re-
sulting from our methodology, we compared speed estimates with
respective exact results after exhaustive evaluation over all incom-
ing positions from 1000K objects (i.e., without shedding any tra-
jectories). As shown in Table 3a for typical settings, the error of
approximate estimates from exact speed measurements is less than
0.7km/h on average, whereas the standard deviation over this dif-
ference is below 1.5km/h. This clearly shows that the estimates
can be considered quite reliable with an error margin up to around
2km/h. Of course, such deviations tend to increase across longer
roads (Table 3b), where wider fluctuations on speed may occur,
especially over roads of length more than a kilometer. Similarly,
roads carrying more traffic (motorways and highways) are more
susceptible to fluctuations in speed, hence slightly wider deviations
may be observed in the respective estimates listed in Table 3c. Given
that vehicles regularly move at high speeds in such arterial roads,
this difference is practically insignificant.

6 CONCLUDING REMARKS
In this paper, we proposed a methodology for restraining system
load at desirable levels when processing multiple queries that com-
pute traffic analytics over streaming trajectories. Our strategy em-
ploys semantic filters that discard raw information obtained from
less important trajectories and retain only those that mostly con-
tribute to the accuracy in resulting aggregates. Our model for load
regulation is adaptive to actual conditions, taking into account the
expected cost of updating varying numbers of trajectories, as well
as the distribution of the continuous queries in order to yield timely
and reliable answers. Extensive tests against scalable data volumes
have confirmed the robustness of this method and its ability to be
self-regulated by smoothly adapting to fluctuating query demands
and dynamically changing motion patterns.

Regarding future extensions, offering guarantees for query ac-
curacy and throughput given a system capacity would greatly add

to the robustness and adaptivity of this mechanism. Besides, prob-
abilistic or sampling schemes could be used to recompensate for
information shed from inactive trajectories. Finally, a distributed
approach with data and query partitioning over multiple processing
nodes in modern cluster infrastructures would be worthwhile for
smoother adaption and load balancing against increasedworkloads.
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