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Abstract—Water management field has concentrated great
interest, with the potential to affect the long term well-being,
the societal economy and security. In parallel, it imposes
specific research challenges which have not been already met,
due to the lack of fine-grained data. Knowledge extraction and
decision making for efficient management in the energy field
has attracted a lot of interest in Big Data research. However,
the water domain is strikingly absent, with minimal focused
work on data exploitation and useful information extraction.
The goal of this work is to discover persistent and meaningful
knowledge from water consumption data and provide efficient
and scalable big data management and analysis services. We
propose a novel methodology which exploits machine learning
techniques and introduces a robust probabilistic classifier
which is able to operate on data of arbitrary dimensionality
and of huge volume. It also provides added value services
and new operation models for the water management domain,
inducing sustainable behavioural changes for consumers, which
can further raise social awareness. It does so through a new
k-Nearest Neighbour based algorithm, developed in a parallel
and distributed environment, which operates over Big Data
and discovers useful knowledge about consumption classes and
other water related attitudinal properties. A detailed experi-
mental evaluation assesses the effectiveness and efficiency of
the algorithm on prediction precision along with the provision
of analytics. The results show that this method is prosperous
and provides accurate and interesting results that allow us to
identify useful characteristics, not only for the households, but
also for the water utilities.
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I. INTRODUCTION

Water is one of the most valuable resources for mankind.
Experts estimate that water will be the most useful good in
the decades to come, and combined with climate change,
a potential cause for geopolitical tensions and conflicts.
Drinkable water is only a small percentage of existing water
bodies and the significance of water management is greatly
acknowledged by various local and national policies. To
determine how water demand is formulated, identify the
factors that influence it, and forecast future demand, the
availability, collation, and analysis of water consumption
data is considerably required.

In the energy domain, huge amounts of data are generated
and feed many applications regarding billing, grid and
demand management in a fine-grained or a more coarse-
grained fashion. However, the available data for water con-
sumption still exhibit extremely low temporal and spatial

granularity. Also, they are highly aggregated and complex,
limiting the potential for data mining and analysis services.

Given the current low volume of data derived from water
measurements, existing systems cannot scale to manage
water consumption data. Towards this direction, smart water
meters are installed either on single fixtures or on a residence
supply system and provide us with a wealth of such data.
But still, consumers have limited access to analytics and
information concerning their usage patterns and habits. Fur-
thermore, personal water monitoring and typical metering
infrastructures must be decoupled, but also interoperable.
This way, they can provide a better understanding of water
use and influence sustainable consumer behaviour.

During the last few years, distributed computing technolo-
gies have emerged to satisfy the need for systems that can
efficiently manage massive volumes of data. MapReduce is
a programming model that enables execution of algorithms
on a cluster based environment, through mapping elements
of a dataset in a key-value pair perception (i.e. mappers) to
several machines (i.e. reducers), via a hashing function. The
result is stored in a Distributed File System (DFS). Several
open-source frameworks of the MapReduce programming
model exist, including Hadoop1, Spark2 and Flink3. Flink
can operate over Hadoop DFS (HDFS) and exhibits better
performance on MapReduce algorithms compared to the
other frameworks [1].

Forecasting tasks are often performed by applying ma-
chine learning algorithms over large data collections. The
simplicity and the effectiveness of k-Nearest Neighbours (k-
NN), have fed many research communities with numerous
applications and scientific approaches, which evolve its
potential over the years. Of particular interest are the k-
NN join methods [2], which retrieve the nearest neighbours
of every element in a testing dataset (R) from a set of
labelled elements in a training dataset (S). Each data element
consists of several features, which constitute the preliminary
knowledge on which the classification is conducted. How-
ever, computing k-NN joins on huge amounts of data is time
consuming when conducted by a single CPU, as it requires
k-NN computation for every element in dataset R. The
MapReduce model accelerates this computation, allowing
for parallel and distributed execution.

1https://hadoop.apache.org/
2https://spark.apache.org/
3https://flink.apache.org/



This work addresses the challenges of Big Data man-
agement, analysis and interpretation of massive water con-
sumption data collected by smart meters. It proposes a
method for scalable data analysis and knowledge extraction
of diverse Big Data collections. It also devises novel means
which facilitate consumers and water utilities to draw useful
conclusions, lead them towards efficient water usage and
induce sustainable lifestyles. We focus on water consump-
tion classification and forecasting, by using large volumes
of historical water consumption data.

In this paper, we present the Flink zkNN (F-zkNN for
short), a robust probabilistic classifier for parallel and dis-
tributed execution by extending over the H-zkNN [3]. More
particularly, we propose a new k-NN based probabilistic
classifier which identifies and predicts water consumption
class probability for arbitrary temporal basis, by using a
voting scheme. We introduce a MapReduce based approach
which reduces file operations for large amounts of data and
is uniquely initialized upon launch. Our approach is unified
in a single session to reduce space occupation and cluster
overloading. Through an experimental evaluation we show
that the proposed method efficiently achieves high prediction
precision and useful knowledge extraction.

II. RELATED WORK

Various approaches have been proposed w.r.t. classifi-
cation, forecasting and prediction. To achieve these tasks,
our work resides in the area of distributed and parallel
computation of k-NN joins over massive amounts of data.
In the following, we present the relevant literature review.

The transition to Big Data has led the k-NN problem
to be widely discussed in the literature. As the number of
dimensions increases, distance computations need an expo-
nentially larger amount of CPU. In our case, the dimensions
emerge prohibitively greater and thus the execution of a k-
NN joins method on huge data volume requires long-lasting
operations. To overcome this issue, we apply dimensionality
reduction on the data via a Space Filling Curve (SFC)
based approach, which is significantly faster than other
similar methods [4]. In particular, we use the z-order curve,
whose elements are expressed by the z-value. The z-order
curve maps a multidimensional set to one dimension and its
accuracy lies in the scanning order of the elements. Figure 1a
shows the recursive way the z-order curve scans the elements
of a two-dimensional space.

Several implementations of MapReduce based k-NN joins
algorithms have been proposed in the direction of data
mining in a distributed environment. Song et al. [5] review
the most efficient approaches among them, concluding that
H-zkNN [3], built on a SFC based approach, is signifi-
cantly faster. The k-NN based knowledge extraction usually
includes three stages, i.e. (i) data pre-processing, (ii) data
partitioning and organization, and (iii) k-NN computation.
Our work extends over the method of Zhang et al. [3] by
additionally proposing a robust probabilistic classifier based
on the MapReduce programming model, executed in a single

Figure 1: The z-order curve.
parallel session, which achieves high prediction accuracy.
We further apply this classifier on forecasting tasks in order
to draw useful knowledge from huge amounts of data.

Classification and forecasting can be performed by apply-
ing a k-NN classifier. It can be realized by predicting the
class of a new observation and having already determined
the dominant class among its nearest neighbours. Gou et
al. [6] present a weighted voting scheme for such classifiers,
where the distance between an element and its nearest
neighbours determines the weight of each neighbour, with
the most weighted one determining the final class of the
query element. We extend over this functionality by also
computing the probability that an element has, in order to
belong to each class.

Similar approaches that apply the k-NN classifier in the
resources consumption domain, include the work of Chen et
al. [7] who used a k-NN classification method and labelled
water data to identify water usage. However, they do not
operate on huge amounts of data, while our approach lies
in the field of Big Data management. Similarly, Kermany
et al. [8], apply the k-NN classifier on low granular water
consumption data, whilst this work is applied over highly
granular data in a distributed and parallel environment.

III. PRELIMINARIES

In order to efficiently extract valuable knowledge from a
huge volume of water consumption data, we apply classifi-
cation and exploit the MapReduce programming model. In
the following, we present some key ideas that our approach
brings together.

A. Problem Definition

Classification is applied in order to determine in which
class of labelled elements a new observation belongs to. A
k-NN classifier is responsible for obtaining the dominant
among the k-Nearest Neighbours’ classes. To achieve that,
we apply a weighted voting scheme and we calculate a
probability to each one of the candidate classes.

Let us consider the set of the k-NN as X =
{xNN1 , xNN2 , ...., xNNk } and the class of each one as a set
C = {cNN1 , cNN2 , ..., cNNk }. The weight of each nearest
neighbour is calculated as follows:



wi =

{
dNNk −dNNi
dNN
k
−dNN1

: dNNk 6= dNN1

1 : dNNk = dNN1

, i = 1, ..., k (1)

where dNN1 is the distance of the query element to the
closest neighbour, dNNi and dNNk its distance to the i-th
and the furthest nearest neighbour respectively. Thus, the
nominator of Equation 1 expresses the distance difference
of the furthest neighbour from the i-th neighbour, while
similarly, the denominator expresses the distance difference
of the furthest neighbour from the closest neighbour to the
query element. By this calculation, the closest neighbours
will be assigned a greater weight.

Let P = {pj}lj=1 be a set containing each probability
class, where l is the number of classes. The probability of
each class is the sum of the weights of the similarly labelled
nearest neighbours, divided by the total weight of the nearest
neighbours and is derived as follows:

pj =

∑k
i=1 wi · I(cj = cNNi )∑k

i=1 wi
, j = 1, ..., l (2)

where I(cj = cNNi ) is a function which takes the value 1 if
the class of the neighbour xNNi is equal to cj .

Finally, the element will be classified as the class with the
highest probability, according to the following formula:

cr = argmax
cj

P, j = 1, ...., l (3)

where cr is the resulting class.

B. The H-zkNN Algorithm

The H-zkNN algorithm is a Hadoop based implementation
of the k-NN, which operates in three separate sessions and
overcomes the complexity issues arising from huge amounts
of data. It applies dimensionality reduction on the R and
S datasets and efficiently splits the work among several
machines.

Similar approaches partition the datasets in n blocks, thus
requiring n2 reducers to calculate each element’s nearest
neighbours, due to the fact that every possible pair of blocks
has to be evaluated. The H-zkNN algorithm overcomes
the problem of data partitioning by adopting a sampling
approach on R and S datasets. This way, the sampled data
can be easily sorted, allowing for partitioning ranges to be
determined. Consequently, the reducers can receive subsets
of R and S only in a specific range. This task requires only
n reducers to perform the calculations instead of n2 that
would be needed in order to evaluate every possible pair of
blocks.

Regarding the dimensionality reduction, the H-zkNN al-
gorithm calculates the z-order curve of the input elements,
in order to significantly reduce the complexity of the cal-
culations. It does so by interleaving the binary codes of
an element’s dimensions, which takes place starting from

the most significant bit (MSB) towards the least significant
(LSB). For example, the z-value of a 3-dimensional element
with feature values 3 (0112), 4 (1002) and 5 (1102), can be
formed by first interleaving the MSB of each number (0, 1
and 1) going towards the LSB, thus forming a final value
of 0111011002. This procedure does not require any costly
CPU execution.

Figure 1a shows how the z-order curve fills a two-
dimensional space from the smallest z-value to the largest.
It can be noticed that some elements are falsely calculated
being closer than others, as the curve scans them first. This
in turn creates an impact on the result’s precision. The H-
zkNN method addresses this by shifting all the elements
by randomly generated vectors and repeating the procedure
using the shifted values, thus compensating part of the lost
precision through scanning the space in an altered sequence.
This is demonstrated in Figure 1b. The four bottom-left
elements are shifted twice in the x-axis and once in the
y-axis, altering the sequence in which they are scanned by
the z-order curve. Consequently, taking under consideration
nearest neighbours of a point from shifted datasets, one can
obtain elements that are close to it, but had been missed by
the un-shifted curve. The main drawback of this approach
is the fact that it has to be executed multiple times, one for
each chosen shift.

The H-zkNN algorithm operates in three separate MapRe-
duce stages each requiring the initiation of a new Hadoop
session. Alternatively, the F-zkNN classifier combines the
three stages into a single Flink session. In the following
section, our approach is presented in more details.

IV. THE F-ZKNN PROBABILISTIC CLASSIFIER

The F-zkNN probabilistic classifier has been unified in a
single distributed session over the Flink framework. Flink
offers a variety of transformations on datasets and is more
flexible due to the fact that a task can be carried out
by a number of available generic task managers, which
mostly denote a single machine on a cluster, constituted of
several processing slots. The reduce transformation can be
executed over grouped datasets, via the groupBy operation,
which assigns a part of the dataset to a different reducer,
according to a pre-specified field. In order to achieve similar
functionality to the Hadoop’s map and reduce operations,
the FlatMap and GroupReduce transformations are used,
which return an arbitrary number of elements, rather than
just a single one. Another aspect that makes Flink more
appropriate, is that it does not require key-value pairs during
the transitions that take place between the transformations.
Instead, Objects or just primitive types are used, optionally
grouped in Tuples.

The scheme of the proposed algorithm, depicted in Fig-
ure 2, consists of the following three MapReduce stages:

A. The pre-processing stage
During the pre-processing stage, the R and S datasets,

along with the random vectors, are read as plain text from



Figure 2: Single session F-zkNN.

the HDFS and delivered to two separate concurrent FlatMap
transformations, identifiable by the input source file. For
each of the α number of shifts, (Algorithm 1, Line 2), the
shifted datasets and their z-values are calculated (Lines 3
and 4) and passed on a Union transformation (Line 5). This
results in a union of the two datasets, which is passed (as an
object containing the values (zval, rid, src, shift, class))
on a GroupReduce transformation, grouped by the shift
number. During the reduce phase, the datasets are sampled
(R̂i and Ŝi) and cached locally (Lines 5-16). The partition
ranges (Rrangei and Srangei) for each shift are calculated
using the sampled datasets and are stored on the HDFS
(Lines 17 and 18). The output of this stage is the locally
cached transformed datasets, which are finally read from the
cache and feed the next stage (Line 19).

Algorithm 1: The F-zkNN pre-processing stage.
Input: Datasets R, S and random vectors V = {v1, ..., vα}, v1 =

−→
0

Output: Transformed datasets RTi and STi , i = 1, ..., α

1 begin
2 for i = 1, ..., α do
3 Ri = R + vi, Si = S + vi
4 RTi ← CALCZVAL(Ri), STi ← CALCZVAL(Si)
5 foreach x ∈ Ri ∪ Si do
6 r ← RANDOM(0, 1)
7 if r < MinThreshold then
8 if x ∈ Ri then
9 INSERTSAMPLE(s, R̂i)

10 end
11 else if x ∈ Si then
12 INSERTSAMPLE(s, Ŝi)
13 end
14 end
15 STORELOCAL(s)
16 end
17 Rrangei ← CALCRANGE(R̂i), Srangei ← CALCRANGE(Ŝi)
18 STOREHDFS(Rrangei, Srangei)
19 return FETCHLOCAL(RTi , S

T
i )

20 end
21 end

B. The partitioning and pre-calculation stage
In this stage, the transformed datasets are received by the

mappers and the previously computed partition ranges are
used (Algorithm 2, Line 4) to partition the datasets to n×α
blocks, (Lines 8 and 15), α being the number of shifts and
n the number of partitions. Each block is then delivered to a
different reducer (Lines 19-28) by using the groupBy opera-
tion (as an object containing (zval, rid, src, group, class)).
There, a range search is performed on each sorted partition
and the k-NN of each x ∈ R element are determined

(Line 22). The neighbouring elements’ coordinates are then
calculated (Line 23), un-shifted using the random vectors
(Line 24) and their distance to the x ∈ R element is
computed (Line 25). Finally, they are integrated into the
proper dataset (Line 26) grouped by element, along with
the calculated distance and feed the final stage (Line 30).

Algorithm 2: The F-zkNN partitioning and pre-
calculation stage.

Input: Datasets RTi , STi , i = 1, ..., α
Output: Dataset RkNearest×α

1 begin
2 RkNearest×α = ∅
3 for i = 1, ..., α do
4 READHDFS(Rrangei, Srangei)
5 foreach x ∈ RTi do
6 for g = 1, ..., n do
7 if ZVAL(s) ∈ Rrangei(g) then
8 ADDINTOPARTITION(s, Rg×i)
9 end

10 end
11 end
12 foreach x ∈ STi do
13 for g = 1, ..., n do
14 if ZVAL(s) ∈ Srangei(g) then
15 ADDINTOPARTITION(s, Sg×i)
16 end
17 end
18 end
19 for g = 1, ..., n do
20 SORT(Rg×i), SORT(Sg×i)

21 foreach x ∈ Rg×i do
22 RES ← RANGESEARCH(s, kNearest, Sg×i)
23 CC ← CALCCOORDS(RES)
24 US ← UNSHIFT(CC)
25 CD ← CALCDIST(s, US)
26 RkNearest×α ← ADD(s× CD,RkNearest×α)
27 end
28 end
29 end
30 return RkNearest×α
31 end

C. The k-NN stage
In the final stage, we directly propagate the second

stage’s results to the reducers. This increases the calculation
efficiency as it reduces the resource requirements of the
execution. Thus, the calculated α×k-NN of each R element,
are received in this stage’s reducers (Algorithm 3, Lines 3-
7), which perform |R| reduce tasks via a Tuple containing a
string value and an object containing (rid, rRid, d, class).
The k-NN of each R element are fetched from the grouped
set of Rk×α. After determining its final nearest neighbours
(Line 4), each query element is classified (Line 5) according



to the probability of each class, which is calculated by using
the Equation 3. Finally, the results are added to the resulting
dataset (Line 6), which is then stored on the HDFS (Line
8).

Algorithm 3: The F-zkNN k-NN stage.
Input: Datasets R,RkNearest×α
Output: Stored dataset Rf on the HDFS

1 begin
2 Rf = ∅
3 foreach x ∈ R do
4 RES ← k-NN(x,RkNearest×i)
5 C ← CLASSIFY(RES)
6 Rf ← ADD(s, C,Rf )
7 end
8 STOREHDFS(Rf )
9 end

V. EXPERIMENTAL EVALUATION

The F-zkNN probabilistic classifier was evaluated on
future water consumption forecasting and the extraction
of useful knowledge from consumption time-series data,
collected in a city scale by smart water meters in Switzerland
and Spain.

A. Experimental Setup
The experimental evaluation was conducted on a dis-

tributed and parallel environment. The setup includes a
system with 4 CPUs each containing 8 cores clocked at
2.13GHz, 256GB RAM and a total storage space of 900GB.
The total parallel capability of the system reaches the 64
threads. The F-zkNN algorithm is executed by using 16 task
managers with 8192MB heap size each.

We firstly experimented on a real-world dataset coming
from Switzerland (Switzerland dataset for short). It included
shower events from 77 households, each containing an
identifier, a timestamp, a smart water meter measurement
calculated in litres, the average temperature and demo-
graphic information. This information was related to the
age, income, number of males or females and total number
of household members. This dataset counts 5795 records.
To increase its volume and assess the classifier’s prediction
efficiency, we used the BigDataBench4, which is a big data
generator. We created various synthetic dataset sizes, scaling
from 50K records to 15M records.

In the next step, we experimented on large-scale real-
world smart water meter data coming from Spain (Spain
dataset for short). The water consumption data were formed
in hourly time-series coming from 1000 households and
covering a time interval of a whole year, i.e. from July 2013
to June 2014. The records included an identifier, a timestamp
and a smart water meter measurement calculated in litres.
This dataset was constituted by 8.7M records.

The optimal value of the k parameter for the F-zkNN
probabilistic classifier was determined through an experi-
mental investigation. The best choice in our context and
datasets was proven to be the value of 15. To overcome

4http://prof.ict.ac.cn/BigDataBench/

the lost precision due to the sampling stage, two shifts were
adequate on the datasets.

B. Feature Selection

Water consumption time-series pose several challenges
on applying machine learning algorithms for classification
and forecasting. Thus, proper features that represent and
correlate different aspects of the data need to be defined in
order to also draw useful conclusions about the determinants
that affect water consumption.

Regarding the Switzerland dataset, which included demo-
graphic information, we used a dataset of increased volume
generated by the BigDataBench (15M records). We took into
consideration the sex, the age and the income of the person
that generated the shower event. We assessed the classifier
by using binary classification for these three features. The
sex prediction was made by using the showers for which we
knew whether the person was male or female, i.e. households
with only one, or of the same sex inhabitants. The age
prediction involved the determination of whether the person
that generates the shower event is of age less than 35
years, or not. Finally, the income prediction involved the
identification of whether the person that takes the shower
has income less than 3000 CHF or not.

Concerning the Spain dataset (8.7M records), we took
into consideration several temporal and seasonal features,
expressed by different time intervals, which affect the water
usage and demand, i.e. the daily time-zone (i.e. [09:00-
17:00), [17:00-21:00), etc.), the hour, the weekday, the
month and the season. According to each household’s mean
monthly water consumption in litres, the customers’ water
usage was categorized from “very environmental friendly”,
to “significantly spendthrift”. By averaging the hourly water
consumption and determining the highest and lowest value,
five equally ranged, demand classes were determined, i.e.
“minimum” (<6 litres), “low” (≥6 and <15 litres), “normal”
(≥15 and <23 litres), “high” (≥23 and <40 litres) and
“maximum” (≥40 litres). Besides, we integrated weather
conditions via the Weather Underground API5. The inte-
grated weather conditions included the hourly temperature,
humidity, and continuous rainfall or heat.

C. Quantitative Evaluation

The F-zkNN probabilistic classifier was evaluated in
the direction of prediction accuracy and useful knowledge
extraction, for both datasets. The algorithm was evaluated
by forecasting water consumption classes for specific time
intervals and also by drawing useful conclusions related with
user characteristics (i.e. sex, age and income). Due to space
shortage, the figures show results either for forecasting or
for knowledge extraction.

The classifier regarding the forecasting was evaluated over
the Spain dataset and the prediction of next day’s hourly
consumption of one or more households for a given time

5http://www.wunderground.com/



interval. Figure 3 shows a visualization of the classifier’s
output. The hourly water consumption characteristics are
distributed into classes. The bars indicate the hourly proba-
bility of one or more households water consumption to be
characterised by each demand class.

Figure 3: Hourly forecasting of each consumption class.

Regarding the Switzerland dataset, we used the ten-fold
cross-validation approach in order to assess useful knowl-
edge extraction. To achieve that, we iteratively split each
dataset into ten equal parts and executed the algorithm the
same number of times, using a different subset as training set
(R) and the rest of the sets, unified, as testing set (S). The
classifier achieved a prediction precision of 78.6%, 64.7%
and 61.5% for sex, age and income, as illustrated in Figure 4.
The results provided us with useful insights concerning
water consumption determinants. An important determinant
of shower water demand is hair length. Females who have
longer hair consume more water. The wrong sex predictions
(i.e. 21.4% out of 100.0%), is due to the variable hair length
of each sex. Moreover, age and income are less important
determinants than sex, as people consume water for their
daily needs, regardless their age and income. People with a
decent income can afford having more expenses regarding
their water consumption. Similarly, younger people are well
informed about the environmental sustainability, resulting in
less wasteful showers.

VI. CONCLUSIONS

This work describes a novel approach delivering a
MapReduce based k-NN probabilistic classifier. Firstly, we
applied data dimensionality reduction and ensured efficient
data sorting and distance computations. We proceeded by
performing data partitioning and pre-calculation, which fed
the k-NN based data classification process. Lastly, we con-
ducted an experimental evaluation to assess the algorithm
w.r.t forecasting, prediction precision and useful knowledge
extraction.

The directions for future work include the performance
comparison of the the F-zkNN algorithm with other similar

Figure 4: Prediction precision for sex, age and income.

approaches to draw useful conclusions and quantify its
efficiency in terms of scalability and execution time. Further
experimental investigations will focus on the improvement
of classifier’s precision and the dynamic determination of the
consumption classes by exploiting the data characteristics.
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