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Abstract. The Data Web refers to the vast and rapidly increasing quantity of 

scientific, corporate, government and crowd-sourced data published in the form 

of Linked Open Data, which encourages the uniform representation of hetero-

geneous data items on the web and the creation of links between them. The 

growing availability of open linked datasets has brought forth significant new 

challenges regarding their proper preservation and the management of evolving 

information within them. In this paper, we focus on the evolution and preserva-

tion challenges related to publishing and preserving evolving linked data across 

time. We discuss the main problems regarding their proper modelling and que-

rying and provide a conceptual model and a query language for modelling and 

retrieving evolving data along with changes affecting them. We present in de-

tails the syntax of the query language and demonstrate its functionality over a 

real-world use case of evolving linked dataset from the biological domain. 

Keywords: Data Web, Data Evolution, Linked Data Preservation, Archiving 

1 Introduction  

The Data Web encompasses the vast and rapidly increasing quantity of scientific, 

corporate, government and crowd-sourced data being published and interlinked across 

disparate sites on the web, usually in the form of Linked Open Data (LOD). Data-

aware practices, such as data interlinking between heterogeneous sources and data 

visualization, have a huge potential to create insights and additional value across sev-

eral sectors, however little attention has been given to the long-term accessibility and 

usability of open datasets in the Data Web. Linked open datasets are subject to fre-

quent changes in the encoded facts, in their structure, or the data collection process 

itself. Most changes are performed and managed under no centralized administration, 

eventually inducing several inconsistencies across interlinked datasets. LOD should 

be preserved by keeping them constantly accessible and integrated into a well-

designed framework for evolving datasets that offers functionality for versioning, 

provenance tracking, change detection and quality control while at the same time 

provides efficient ways for querying the data both statically and across time.  
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Most of the challenges related to the management of LOD evolution stem from the 

decentralized nature of the publication, curation and evolution of interdependent da-

tasets, with rich semantics and structural constraints, across multiple disparate sites. 

Traditional database versioning imposes that data and evolution management take 

place within well-defined environments where change operations and data dependen-

cies can be monitored and handled. On the other hand, web and digital preservation 

techniques assume that preservation subjects, such as web pages, are plain digital 

assets that are collected (usually via a crawling mechanism), time stamped and ar-

chived for future reference. In contrast to these two approaches, the Data Web poses 

new requirements for the management of evolution [11][24]. Observe Figure 1 where 

an example from the biological domain is presented. EFO is an ontology that com-

bines parts of several life science ontologies, including anatomy, disease and chemical 

compounds [25]. Its purpose is to enable annotation, analysis and visualization of data 

related to experiments of the European Bioinformatics Institute
1
. In the figure, a URI 

that represents a Cell Line class changes between two consecutive versions and be-

comes obsolete. EFO entities are being published in LOD format, enabling other sites 

to reference and interlink with them. EFO is regularly updated and new versions are 

published on the web, usually overwriting previous ones. In this context, several in-

teresting problems and challenges arise related to long-term preservation and accessi-

bility of evolving LOD datasets: 

Evolution Modeling: LOD datasets are evolving entities for which additional con-

straints may hold related to the way data is published, and evolve as dictated by do-

main-specific, complex changes. This calls for appropriate modelling methods for 

preserving across time a multitude of dimensions related to the internal structure of a 

dataset, its content and semantics as well as the context of its publication. Preserva-

tion should exhibit format-independence, data traceability and reproducibility and a 

common representation for data that originate from different models. Reference 

schemes (URIs) must be properly assigned such that unique identification and resolu-

tion is achieved across different sites, and most importantly across time. Provenance 

metadata can capture dataset lineage from the dataset to the record level. Distributed 

replication of LOD enhanced with temporal and provenance annotations can enable 

long-term availability and trust. 

Change management. Changes can occur at different granularity levels. At the da-

taset level, datasets are added, republished, or even removed, without versioning or 

preservation control; at the schema level, the structure may change calling for repair 

and validation on new versions; finally, at the instance level data resources and facts 

are added, deleted or updated. Discovering changes [16] and representing them as 

first class citizens with structural, semantic, temporal and provenance information is 

vital in various tasks such as the synchronization of autonomously developed LOD 

versions, or visualizing the evolution history of a particular dataset.  

                                                           
1 http://www.ebi.ac.uk/ 



 
Figure 1. Evolution of a Cell Line between versions 2.45 and 2.46 of the Experimental Fac-

tor Ontology. 

Longitudinal accessibility and querying. LOD preservation mechanisms must ena-

ble the long-term accessibility of datasets and their meaningful exploration over time. 

Datasets with different time and schema constraints coexist and must be uniformly 

accessed, retrieved and combined. Longitudinal query capabilities must be offered 

such that data consumers can answer several types of queries, within a version or 

across sets of versions. Querying must take place (i) across time, (ii) across datasets 

and (iii) across different levels of granularity of evolving things.  

Considering the above, the benefits of evolution management can be placed into 

two categories, namely quality control and data analysis. Data evolution provides 

valuable insights on the dynamics of the data, their domains and the operational as-

pects of the communities they are found in, while tracking the history of and main-

taining proper metadata of data objects across time enables better interoperability, 

trust and data quality.  

To address these challenges, in this paper we propose a modelling approach and a 

query language for evolving LOD datasets. At the basis of the archive lies a concep-

tual model, called DIACHRON model
2
 that captures structural concepts like datasets 

and their schemas, semantics like web resources, their properties and links between 

them as well as changes occurring on these concepts in different granularity levels. In 

the same time, our approach models in a uniform way both time-aware (evolving) and 

time-agnostic (diachronic) concepts, representing their between interconnections. 

Based on this model, a query language is designed that specifically caters for the 

                                                           
2  It has been developed in the context of the DIACHRON project and is part of the 

DIACHRON preservation platform, http://www.diachron-fp7.eu 



model’s inherent characteristics and takes advantage of the abstraction levels thus 

making the user avoid complicated, implementation-dependent queries. The query 

language is designed as an extension of SPARQL, specific to the DIACHRON model, 

that tackles the duality of data (evolving vs. diachronic objects) in order to provide a 

query mechanism with the ability to correlate source data with changes, annotations at 

various levels and other kinds of DIACHRON related metadata across time. Finally, 

these are implemented under the broader scope of an archiving framework capable of 

storing and making available in the long term evolving LOD datasets.   

Our approach provides the following contributions: 

1. Evolution Storage: We consider the way data is recorded at the source as an 

evolving aspect of a dataset that enables recreation of a dataset at its original 

model and format. Furthermore, storing resources and their semantics and cap-

turing their evolution enables semantically meaningful tracking of the re-

sources’ timelines. We show how these aspects can be modelled stored to sup-

port querying. 

2. Multi-versioning: We propose a way to version datasets on different levels by 

providing both time-agnostic and time-dependent representations of evolving 

entities. 

3. Metadata management: We provide placeholders for metadata at all levels 

through the DIACHRON model, which enable provenance and temporal anno-

tations on all types of objects within the archive, such as the structural blocks 

of a dataset, the higher-level entities that appear in it, as well as the changes 

between versions.  

4. Querying: We propose the DIACHRON Query Language in order to enable 

retrieval of data and metadata with complex queries across versions and inte-

gration of low level and high level data as well as changes in the results. 

This paper is outlined as follows. In section 2 we present the DIACHRON data mod-

el, in section 3 we present the DIACHRON query language, in section 4 we describe 

our implementation of an archive that uses the proposed model and query language, 

while in section 5 we perform experimental evaluation. Section 6 discusses related 

work and section 7 concludes the paper. 

2 An archive model for evolving datasets 

Our modelling approach supports a format-independent archiving mechanism that 

maintains syntactic integrity by making sure that the original datasets are reproducible 

and at the same time takes advantage of information-rich content in these datasets. 

Format-independence of the model is part of a larger scope of requirements within 

DIACHRON where different source models (e.g. relational, multidimensional, onto-

logical) can be transformed to the same RDF representation, uniformly annotated with 

temporal and provenance information and archived.. The DIACHRON model pro-

vides the basis for defining semantically richer entities that evolve with respect to 

their source datasets’ history. At the core of the model lies the notion of the evolving 

entity, which captures both structural and semantic constructs of a dataset and acts as 

a common placeholder for provenance, temporal, and other types of metadata. 



Evolving entities are identifiable and citable objects. These entities all share a 

common ancestor (i.e. are subclasses of) the Diachronic Entity, which allows the 

aforementioned requirements to be addressed on many different levels. The different 

types of entities in the DIACHRON model and their interactions can be seen in Fig 2 

and described in the following. 

 

 
Figure 2. The DIACHRON model space. 

Diachronic datasets and dataset instantiations. Diachronic datasets are conceptual 

entities that represent a particular dataset from a time-agnostic point of view, which in 

turn is linked to its temporal instantiations or versions. Furthermore, diachronic da-

taset metadata comprise information that is not subject to change, such as diachronic 

dataset identifiers. These identifiers serve as ways to refer to the datasets in a time 

and/or version unaware fashion (i.e. diachronic citations). On the other hand, dataset 

instantiations define temporal versions of diachronic datasets, holding information on 

how and when a particular dataset was relevant, active, trusted and so on..  

Record sets. Record sets are collections of data entries (e.g. tuples, triples) over a 

given subject/primary key within a particular dataset instantiation. Given a record set 

and the dataset’s metadata information, the dataset instantiation can be queried and 

reproduced in its original form. Keeping data objects separate from schema objects 

makes versions interpretable by different schemata (e.g. new schema on old data or 

vice versa).  

Schema Objects. Schema objects represent the schema-related entities of the ar-

chived datasets given the dataset’s source model. For instance, the classes along with 



their class restrictions of an ontology, the properties and their definitions (domains, 

ranges, meta properties depending on the expressivity) are modelled as schema ob-

jects. Similarly to data objects, the goal is to provide a reusable modelling mechanism 

for identifying and referring to schema elements and their evolution across datasets. 

In this way, schema evolution is captured by annotating schema elements with sche-

ma changes.  

Data Objects. Data objects consist of records and record attributes. A record rep-

resents a most granular data entry about a particular evolving entity. Records are 

uniquely identified in order to make record-level annotation feasible in order to at-

tribute provenance, temporality and changes on them. A record serves as a container 

of one or more record attributes. Every data record is broken down to assertions 

(facts) that can be expressed as RDF triples. In this sense, a record reifies the predi-

cate-object pairs for a fixed subject. These predicate-object pairs are called record 

attributes. For instance, a tuple from a relational table is considered to be a record 

describing the tuple’s primary key, with each relational attribute being a record attrib-

ute. In [3], [26] we describe in details how data records from relational, multidimen-

sional and RDF models can be mapped to data objects in our model. 

Diachronic Resources and resource instantiations. Similarly to diachronic da-

tasets, a diachronic resource represents a time-agnostic information entity. The re-

source instantiation captures the resource evolution across time and its realization 

over a versioned dataset’s records. The definition of a resource consists of two parts; 

the resource identification definition gives the way an instantiated resource is identi-

fied within the archive. The resource description definition provides the way a re-

source is evaluated over the records of a particular dataset instantiation. Resources 

can be versatile in nature across datasets and data formats. For example, given an 

ontology and its instantiation, each class instance can describe a resource identified by 

the respective URI. Given a table of employees in a relational database, a resource in 

this sense can be a particular employee identified by his primary key. Finally, in a 

multidimensional dataset, a resource can be a specific observation identified by the 

values of the constituent dimensions.  More complex definitions of resources are al-

lowed and, in fact, encouraged for capturing more high-level, curator specific seman-

tics of evolution and dataset dynamics.  

Change sets. Changes come in Change Sets between two dataset instantiations of a 

diachronic dataset. These are comprised of changes between record sets, changes 

between schemata and changes between resource instantiations of the two datasets 

under comparison. 

The proposed data model provides a conceptual way of uniformly representing 

low-level and high-level evolving entities. Within the context of our model, an evolv-

ing entity is a dataset instantiation (affected by changes in its schema and contents), a 

schema object, a data object or finally a resource instantiation object. This gives us a 

uniform way to model evolution and annotate entities at different levels of granulari-

ties with information related to the changes affecting them. Furthermore, it enables us 

to enrich evolving entities with metadata related to the way these entities are pub-

lished on remote sites and collected in the archive, such as provenance information, 

quality and trust. 



3 The DIACHRON Query Language 

3.1 Requirements and Overview 

As described is the previous section, the DIACHRON model provides metadata 

hooks in many different granularities, from the dataset to the record level. In this sec-

tion, we motivate the need for an appropriate query language that exploits the speci-

ficities of the data model and provides ways to achieve the following: 

 Dataset and version listing: Retrieve lists of datasets stored in the archive, as well 

as lists of the available versions of a given dataset. These can either be exhaustive 

or filtered based on temporal, provenance or other metadata criteria. 

 Data queries: Retrieve part(s) of a dataset that match certain criteria.  

 Longitudinal queries: As above but with the timeline of all types of diachronic 

entities. Temporal criteria can be applied to limit the timeline (specific versions 

or time periods), or successive versions. 

 Queries on Changes: Retrieve changes between two concurrent versions of an 

entity (dataset, resource etc.). Limit results for specific type of changes, or for a 

specific part of the data. 

 Mixed Queries on Changes and Data: Retrieve datasets or parts of datasets that 

are affected by specific types of changes. 

 

Furthermore, in this section, we propose the DIACHRON Query Language 

(DIACHRON QL), an extension of SPARQL, to tackle these requirements. On the 

basis of the query language is the DIACHRON graph pattern, a specialization of a 

SPARQL graph pattern. SPARQL queries are valid DIACHRON queries, however 

several new keywords are defined in order to cover the model’s characteristics and 

allow the user to query archived data intuitively and seamlessly. The DIACHRON 

query language introduces keywords that can define the scope of a query w.r.t. the 

matched diachronic datasets and its versions, or the change sets used to match chang-

es. This is done with the use of FROM DATASET or FROM CHANGES in the beginning of 

a SELECT or CONSTRUCT query, which are both used to define the URI(s) of the da-

taset versions or change sets where the query body should be limited. While FROM 

DATASET and FROM CHANGES are used outside of the query body in order to define the 

scope for the following query, limiting the scope of a specific graph pattern can be 

done inside the query body, similarly to SPARQL’s GRAPH. In DIACHRON, this is 

done by using DATASET or CHANGES followed by a graph pattern in curly brackets 

(notice that FROM is used only outside of the query body).  Specific dataset/change set 

versions and version intervals can be defined using the AT VERSION, AFTER 

VERSION, BEFORE VERSION or BETWEEN VERSIONS keywords. 

Diachronic datasets, versions and change sets can be bound to variables at query 

execution with the use of DATASET or CHANGES. This is simply done by using varia-

bles instead of explicit URIs, inside the query body, i.e. not in a FROM clause. For 

example, consider the case where we want to retrieve all the information (predicate-



object pairs) associated with the protein efo:EFO_0004626, and find out what the 

state of this information is for all the dataset versions of the EFO ontology it appears 

in (and what are those versions).  That is, the dataset versions as well as the actual 

information are to be retrieved. In DIACHRON QL this can be written as follows: 
SELECT ?version ?p ?o WHERE { 

 DATASET <EFO> AT VERSION ?version { 

  efo:EFO_0004626  ?p  ?o 

} 

} 

 This will retrieve all versions of EFO joined with predicate-object pairs for the 

protein efo:EFO_0004626. If we want to retrieve the records these predicate-object 

pairs appear in, without querying for the particular dataset versions. We can retrieve 

the URIs of the DIACHRON records these triples appear in by modifying the query 

as follows: 
SELECT ?rec ?p ?o FROM DATASET <EFO> WHERE { 

  RECORD ?rec {efo:EFO_0004626  ?p  ?o} 

} 

With the optional use of the RECATT keyword we can retrieve the URIs of the rec-

ord attributes of a matched record. The previous query would become: 
SELECT ?rec ?ra ?p ?o FROM DATASET <EFO> WHERE { 

  RECORD ?rec {efo:EFO_0004626   

RECATT ?ra {?p  ?o}  

} 

} 

When writing a basic archive graph pattern, the query can either contain simple tri-

ples, or more verbose constructs that take into account the archive data model and 

structure. Specifically, the simple triples will match the de-reified data, whereas the 

RECORD and RECATT (abbreviation of ‘record attribute’) blocks will also take into 

account a triple’s record or record attribute. 
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Figure 3. (a) matches in a simple triple query, (b) matches a blown-out version of the same 

query with the RECORD and RECATT terms, selecting both data and structural elements. (c) 

matches subject, predicate, object and record, (d) matches predicate, object and record attribute. 

This is detailed in figure 3 where we show how term and variable use is reflected 

on the matched graph of a particular reified triple. This way, metadata (e.g. temporal, 

provenance) of the records and/or record attributes can be queried as well as com-

bined with data queries. It should be noted that in the simplest case where only the 

data are of interest, the query does not need to include RECORD or RECATT blocks.  

3.2 Query Syntax and Examples 

DIACHRON QL clauses are formally described in the following section and an over-

view of them is presented in table 1. In table 2 usage examples are presented for all 

DIACHRON QL clauses. 

 

FROM DATASET <diachronicURI> [[AT VERSION <instantiationURI>]] 

The FROM DATASET keyword is followed by a URI of a diachronic dataset to de-

clare the dataset scope of the query. If no FROM DATASET is given, then the whole 

corpus of datasets is queried.  The optional AT VERSION keyword limits the selected 

diachronic dataset to a specific dataset instantiation. No variables can be given in any 

of the parameters of FROM DATASET AT VERSION. 

 

Table 1: The DIACHRON query language syntax in E-BNF. 



DiachronQuery := ‘DIACHRON‘  

 ‘SELECT’ (‘DISTINCT‘)? (Var+|’*’)  

         Source_Clause*  

        ‘WHERE‘ Where_Clause*  

Source_Clause := ( ‘FROM DATASET’ <URI> [‘AT VERSION’ <URI>] | 

‘FROM CHANGES’ <URI> [‘BEFORE VERSION’ <URI> | 

 ‘AFTER VERSION’ <URI>   |  ‘BETWEEN VERSIONS’ <URI>+2] ) 

Where_Clause :=  ( Diachron_Pattern  

  [‘UNION’ Diachron_Pattern]  

  [‘OPTIONAL‘ Diachron_Pattern] )  

Diachron_Pattern :=  (Source_Pattern  Basic_Archive_Graph_Pattern ) 

Source_Pattern :=  ((‘DATASET‘ <VarOrURI> [‘AT VERSION’ <VarOrURI>]) |  

(‘CHANGES’ <VarOrURI> [‘BEFORE VERSION’ <VarOrURI>]) |  

(‘CHANGES’ <VarOrURI> [‘AFTER VERSION’ <VarOrURI>]) |  

(‘CHANGES’ <VarOrURI> [‘BETWEEN VERSIONS’ <VarOrURI>+2])) 

Basic_Archive_ 

Graph_Pattern := 

 ‘{‘ SPARQL_Triples_Block* Record_Block* Change_Block* ‘}’ 

Record_Block :=  ‘RECORD‘ <VarOrURI> ‘{‘ 

                        <VarOrURI> ((<VarOrURI>+2 ‘.’)*) |  

                           (‘RECATT‘ <VarOrURI> ‘{‘ <VarOrURI>+2 ‘}’)*  

        ‘}’ 

Change_Block :=  ‘CHANGE‘ <VarOrURI> ‘{‘  

                                         (<VarOrURI>+2 ‘.’)* 

                     ‘}’ 

SPARQL_ 

Triples_Block := 

As defined in the SPARQL recommendation
3
. 

FROM CHANGES <diachronicURI>  [[BETWEEN VERSIONS <version1URI> 

<version2URI>] || [BEFORE VERSION <versionURI>] || [AFTER 

VERSION <versionURI>]] 

FROM CHANGES is used to query change-sets directly. Optionally, it is immediate-

ly followed by a URI of a diachronic dataset that defines the diachronic dataset to be 

queried on its changes. If no URI is given, then all existing change sets will be used to 

                                                           
3 http://www.w3.org/TR/sparql11-query/ 



match the query body. FROM CHANGES can optionally be used with BETWEEN 

VERSIONS, BEFORE or AFTER VERSION to limit the scope of the changes.  

 

DATASET <URI | ?var> [[AT VERSION <URI | ?var>]] { (query) } 

The DATASET keyword differs from FROM DATASET in that it is found inside a 

query body. It is followed by a URI/variable of a diachronic dataset to declare or bind 

the scope of the graph. DATASET is inside a WHERE statement and is followed by a 

graph pattern, on which the dataset restriction is applied. It is optional, meaning that if 

no DATASET is given, then the whole corpus of datasets will be queried, or the da-

tasets defined in the FROM DATASET clause. The AT VERSION keyword, when 

applied to a DATASET statement inside a WHERE clause, is used to either define a 

specific dataset instantiation or bind dataset instantiations to a variable for the graph 

pattern that follows. However, AT VERSION is optional and if no specific dataset 

instantiation URI or variable is declared, AT VERSION is omitted. An example of 

matching both triples and versions can be seen in fig 4. 
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Figure 4. Matching a reified triple in a query with variable versions. Blue nodes are selected by 

the query. 

 

RECORD <record_URI | ?record_var>  

{<subjectURI | ?subject_var > ATTRIBUTE_pattern} 

RECORD is used inside the body of a graph pattern for querying either a specific 

DIACHRON record or to match DIACHRON records in the pattern. It is followed by 

a record URI/variable. If neither of those is declared, the RECORD keyword can be 

omitted. Following RECORD is a block containing a graph pattern that can either be of 

SPARQL form, or used in conjunction with the RECATT keyword. 



Table 2. Query language keywords and usage examples. 

Keyword Parameters Usage example 

SELECT  variable list SELECT ?x, ?y, ?z 

FROM DATASET  URI of diachronic dataset SELECT ?x, ?y, ?z  

FROM DATASET <efo-protein-sample> 

FROM DATASET 

AT VERSION  

URI of dataset instantiation SELECT ?x, ?y, ?z  

FROM DATASET <efo-protein-sample> AT VERSION <v1> 

FROM CHANGES  URI of diachronic dataset  SELECT ?x, ?y, ?z  

FROM CHANGES <efo-protein-sample> 

FROM CHANGES 
... BETWEEN 

VERSIONS (params) 

URIs of dataset instantia-

tions to define the change 

scope 

SELECT ?x, ?y, ?z  

FROM CHANGES <efo-protein-sample> BETWEEN VERSIONS <vm>, <vn> 

FROM CHANGES … 

AFTER / BEFORE 

VERSION (params) 

URI of dataset instantiation 

to define the start/end of the 

change scope 

SELECT ?x, ?y, ?z  

FROM CHANGES <efo-protein-sample> AFTER / BEFORE VERSION <vm> 

WHERE { (params) 

} 

DIACHRON patterns SELECT ?x, ?y, ?z  

FROM DATASET <efo-protein-sample>  

WHERE { 

 ?x a efo:Protein ; ?y ?z . 

} 

DATASET (params) URI or variable of dia-

chronic dataset 

SELECT ?x, ?y  

WHERE { 

    DATASET ?x { 

 ?s a efo:Protein. 

    }  

    DATASET ?y { 

 ?s dcterms:creator “EBI” 

    } 

} 

DATASET … AT 

VERSION (params) 

URI or variable of dataset 

instantiation 

SELECT ?x, ?y  

WHERE { 

    DATASET ?x AT VERSION ?var { 

 ?s a efo:Protein. 

    }  

    DATASET ?y AT VERSION <v1> { 

 ?s dcterms:creator “EBI” 

    } 

} 



RECORD (params) URI or variable of 

DIACHRON record 

SELECT ?x, ?r, ?y  

WHERE { 

    DATASET ?x AT VERSION ?var { 

 RECORD ?r {?s a efo:Protein} 

    }  

    DATASET ?y AT VERSION <v1> { 

 ?s dcterms:creator “EBI” 

    } 

} 

RECATT (params) URI or variable of a 

DIACHRON record attrib-

ute 

SELECT ?var, ?r, ?ra 

WHERE { 

    DATASET <efo> AT VERSION ?var { 

 RECORD ?r { 

                  ?s RECATT ?ra {rdf:type efo:Protein} 

           } 

    }  

 } 

CHANGES (params) URI of diachronic dataset or 

variable 

SELECT ?c, ?param1, ?value1  

WHERE { 

  CHANGE ?c {?param1 ?value1 } 

} 

CHANGES ... 

BETWEEN 

VERSIONS (params) 

URIs of dataset instantia-

tions or variables to define 

the change scope 

SELECT ?v1, ?v2, ?c 

WHERE { 

CHANGES <EFO> BETWEEN VERSIONS ?v1,                   

?v2 { 

?c rdf:type co:Add_Definition ; 

?p1 [co:param_value ?o3 . rdf:type co:ad_n1 ] ; 

?p2 [co:param_value ?o4 . rdf:type co:ad_n2 ] 

} 

} 

CHANGES … 

AFTER / BEFORE 

VERSION (params) 

URI of dataset instantiation 

or variable to define the 

start/end of the change 

scope 

SELECT ?s ?p ?o 

WHERE { 

CHANGES <efo-protein-sample> BEFORE/AFTER    VERSION <vm> { ?s ?p 

?o} 

    } 

} 

CHANGE (params) URI of change or variable SELECT ?v1, ?v2, ?c, ?p ?o WHERE { 

 CHANGES <EFO> BETWEEN VERSIONS ?v1     

?v2{ 

                      CHANGE ?c {?p ?o} 

} 

 

 

 

 



RECATT <recattURI | ?recatt_var>  

{ <predicateURI | ?predicate_var> <objectURI | ?var> } 

RECATT (short for RECORD ATTRIBUTE) is used inside a RECORD block and 

separates the subject of a DIACHRON record with the record attributes that describe 

it. It is followed by a URI/variable. If no specific record attribute needs to be queried 

or matched in a variable, RECATT can be omitted. 

 

CHANGES <diachronicURI | var> [[BETWEEN VERSIONS <version1URI | 

?var1>] || [BEFORE VERSION <versionURI | var1>] || [> AFTER 

VERSION <versionURI | var1>]] 

CHANGES is used to limit the scope of a block within a larger query into a particu-

lar change set, or match change sets to a variable. If no URI is given, then all existing 

change sets will be used to match the query body. CHANGES can optionally be used 

with BETWEEN VERSIONS, BEFORE VERSION or AFTER VERSION to limit the 

scope of the changes or bind the dataset versions that match the change set pattern to 

variables. 

 

CHANGE <changeURI | ?change_var> 

The CHANGE keyword is used to query a particular change in a fixed query block 

within a larger query pattern. It is followed by a specific change URI or a variable to 

be bound. The succeeding block is used to declare the change parameters in a predi-

cate-object manner. 

4 Implementation 

In this section we present the implementation of the proposed query language. We 

first provide an overview of the overall architecture of the DIACHRON archive. The 

archive employs the proposed DIACHRON model for storing evolving LOD datasets. 

The query engine is a core component of the archive, responsible for processing 

queries expressed in the DIACHRON QL and retrieving data out of the archive.  

4.1 Overall architecture 

The architecture of the archive and various components of the archive can be seen in 

figure 5. The archive’s web service interface is exposed via the HTTP protocol as the 

primary access mechanism of the archive through a RESTful web service API. The 

Data Access Manager provides low level data management functionality for the ar-

chive. It is bound to the specific technology of the underlying store, in our case 

Openlink Virtuoso 7.1
4
, as well as external libraries that provide data access function-

ality for third-party vendors. For this we used the Jena semantic web framework
5
. It 

serves as an abstraction layer between the store and the query processor.  

                                                           
4 http://virtuoso.openlinksw.com/ 
5
 https://jena.apache.org/  
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Figure 5: Architecture of the archive. 

The archive employs a Data Access Manager, a Store Connector, a Data Modeler, 

an Archive Optimizer and a Query Processor. The Store Connector is the software 

package that provides an API to other components of the archiving module for com-

munication and data exchange with the underlying store and is implemented with the 

Virtuoso JDBC Driver package
6
. The Data Store employs a Virtuoso 7.1 instance. 

The Data Modeler component handles the dataset input functionality and data trans-

formations from the DIACHRON dataset model to the native data model of the store 

and vice versa, and consists of the Data Translator and the Data Loader. The Archive 

optimizer component supports the optimization of the datasets’ storage method based 

on various archive strategies as shown in [23] that are not discussed in this paper. It 

                                                           
6 http://docs.openlinksw.com/virtuoso/VirtuosoDriverJDBC.html 



performs analysis of the dataset characteristics and chooses the most efficient storage 

strategy based on metrics.  

The Query Processor component is the base mechanism for query processing and 

thus data access. It consists of the following subcomponents: 

 Validator: validates the DIACHRON queries for syntactic validity against the 

DIACHRON QL syntax described in section 3. 

 Query parser: parses the queries in DIACHRON QL so as to create a structure 

of elements that correspond to DIACHRON Dataset Entities and DIACHRON 

query operators.  

 Query Translator: creates the execution plan of DIACHRON queries by trans-

lating the queries in SPARQL. The translator also makes use of the various ar-

chive structures implemented in the persistence store and the appropriate indexes 

and dictionaries. The query translator is the subcomponent that ties the 

DIACHRON archive module to the specific storage technology of RDF and 

SPARQL. Translation is further described in section 4.2 

 Executor: executes the created execution plan step by step and retrieves the raw 

data from the store so as to build the result set of the query. It uses also the Data 

Modeler component in order to perform, if necessary, data transformations from 

the native data model of the underlying store to the DIACHRON dataset model. 

4.2 Translation of DIACHRON QL to SPARQL 

DIACHRON graph patterns are translated to SPARQL as shown in table 3. 

DIACHRON QL can be directly translated to SPARQL in order to take advantage of 

existing foundations, concepts and implementations and benefit from the W3C rec-

ommended graph-based query language. The language is tightly bound to the data 

model of evolution presented in this article and the new syntax tokens correspond to 

SPARQL query patterns that are populated with appropriate variable bindings and/or 

URIs. The drawback to this approach lies in the fact that to actually translate a given 

query language to SPARQL, a good grip of the archive’s internal structure is needed. 

In particular, in our implementation, datasets, record sets and change sets are all 

stored in designated named graphs. Therefore, to actually translate a query that de-

fines a particular dataset version (e.g. by using the DATASET AT VERSION token), 

the knowledge that this version’s record set and schema set are stored in named 

graphs is needed in order to provide it to the resulting SPARQL query’s FROM or 

GRAPH pattern. If the archive was implemented on top of a relational database, the 

query language translator would need to know the database’s schema, the names and 

characteristics of the tables where records and other evolving entities are stored. 

Therefore, this makes it reliant to the underlying implementation. 

 

 

 

 

 

 



Table 3. DIACHRON graph patterns and their translation to SPARQL. 

DIACHRON Pattern (Parsed Syntax) SPARQL 

{?s ?p ?o} { [a evo:Record ;  

      evo:subject ?s ;  
      evo:hasRecordAttribute   

             [ evo:predicate ?p ;  evo:object ?o ]]} 

{ 

   RECORD ?r {?s ?p ?o}  

} 

{?r a evo:Record ;  

      evo:subject ?s ;  

      evo:hasRecordAttribute   
              [evo:predicate ?p ; evo:object ?o]} 

{ RECORD ?r {  
    ?s RECATT ?ra {?p ?o} 

      } 

} 

{?r a evo:Record ;  
      evo:subject ?s ;  

      evo:hasRecordAttribute  ?ra .   

      ?ra evo:predicate ?p ; 
            evo:object ?o} 

{ 
DATASET <EFO> AT VERSION ?v  

  { 

   RECORD ?r {  
    ?s RECATT ?ra {?p ?o} 

      } 

   } 
} 

{GRAPH <dataset_dictionary> { 
    <EFO> evo:hasInstantiation ?v .  

    ?v evo:hasRecordSet ?rs 

} GRAPH ?rs{ 
    ?r a evo:Record ;  

      evo:subject ?s ;  

      evo:hasRecordAttribute  ?ra .   
      ?ra evo:predicate ?p ; 

            evo:object ?o }} 

FROM DATASET <EFO> AT VERSION 

<EFO/v1> 

 
{   

   RECORD ?r {  

    ?s RECATT ?ra {?p ?o} 
      }    

} 

{GRAPH <dataset_dictionary> { 

    <EFO> evo:hasInstantiation <EFO/v1> .  

    <EFO/v1> evo:hasRecordSet ?rs 
} GRAPH ?rs{ 

    ?r a evo:Record ; evo:subject ?s ;  

      evo:hasRecordAttribute  ?ra .   
      ?ra evo:predicate ?p ; 

            evo:object ?o }} 

FROM CHANGES <EFO> BETWEEN 

VERSIONS <EFO/v1> <EFO/v2> 

 

{   

     CHANGE ?c {?p ?o} 

} 

{GRAPH <dataset_dictionary> { 

  ?cs  a evo:ChangeSet ;  

         evo:oldVersion <EFO/v1> ;  

         evo:newVersion <EFO/v2>  

} GRAPH ?cs{ 

    ?c a _:Change ; ?p ?o }} 

5 Experimental Evaluation 

In this section we present the experimental evaluation of our approach over a real 

world evolving biological use case of the EFO ontology as well as use case concern-

ing evolving multidimensional data of the statistical domain published on the web in 

LOD format following the Data Cube Vocabulary
7
 approach. In the first case, we 

                                                           
7 http://www.w3.org/TR/vocab-data-cube/ 



consider 15 consecutive versions of the ontology, that exhibit various types of chang-

es, both simple and complex. In the second case, we consider four multidimensional 

datasets each comprised of three consecutive versions. We load all datasets into the 

same archive instance, and in order to do so, the data are first converted to fit the 

DIACHRON model. For this, we implemented a conversion mechanism as part of the 

Data Modeller component presented in the previous section. The modeller reifies data 

to records and record attributes. Data are mapped to the DIACHRON data model in 

the following manner. First, classes and their definitions (domains, ranges) are mod-

elled as schema objects. The triples are grouped by their subjects. For each subject 

URI, its corresponding predicate-object pairs are modelled as record attributes and 

grouped in records. The subject records are in turn connected with the record attrib-

utes created for each triple associated with a subject URI. For a more in-depth discus-

sion of the mapping process the reader is referred to [26]. 

5.2 Experiments 

The goal of the experimental evaluation was to assess the performance of our imple-

mentation w.r.t three main aspects: the time overhead related to the initial loading of 

the archive, the time overhead related to the retrieval of the datasets in their original 

form (de-reification and serialization) and the time overhead of executing queries of 

different difficulty. Our approach was implemented in Java 1.7, and all experiments 

were performed on a server with Intel i7 3820 3.6GHz, running Debian with kernel 

version 3.2.0 and allocated memory of 8GB. 

First, bulk operations on whole datasets have been tested, namely loading and re-

trieving full dataset versions. Loading and retrieval times can be seen in figure 6 (a) 

and (b). A series of 10 tests were run for each version of the datasets and the averages 

have been used in computing times, using least squared sums. Loading a dataset in the 

archive implies splitting it into the corresponding structures, i.e. dataset, record set, 

schema set and change set, and storing it in different named graphs. The splits were 

done directly in the store using the SPARQL update language and basic pattern 

matching, thus no need to put a whole dataset in memory arose, which would be cost-

ly in terms of loading in and building the respective Java objects in Jena
8
. The in-

creasing sizes of the input datasets are the effect of their evolution, as new triples are 

being added. In the same figure (b), retrieval times can be seen for the same datasets. 

Retrieval of a dataset is the process of de-reifying it to recreate the dataset version at 

its original form and structure. As can be seen, both loading times and retrieval fit into 

a linear regression w.r.t to the datasets’ sizes as measured in record attributes and 

imply that no additional time overhead is imposed that would destroy linearity as new 

versions of a dataset are stored in the archive. 

Figures 6(c)-(f) show running times of 12 queries we devised for this experiment. 

An analysis of the queries’ characteristics can be seen in table 4. In figures 6 (c) and 

(d) we perform a series of queries on different dataset versions. Specifically, two sets 

of 5 queries have been devised to run on a fixed dataset. Each query is run on one 

                                                           
8 https://jena.apache.org/ 



particular version, and the total running time of all 5 queries in each set (c) and (d) is 

calculated after retrieving the results and storing them in memory, which implies a 

simple iteration on all results. The query sets are made up from SELECT queries that 

combine structural entities (records, record attributes etc.) with actual data entries 

(subject URIs etc.) in different levels of complexity. In Figure 6 (a) no aggregate 

functions, OPTIONALs or other complex querying capabilities have been used, while 

in Figure 6 (b) the queries consist of selecting, aggregating and filtering graph pat-

terns. As in the case of loading and retrieval, the archive behaves in a linear way as 

the size of a dataset increases. 

Finally, two queries, Q11 and Q12, with variable datasets that search in the entire 

archive have been devised and run on an incrementally larger archive, that is, the 

queries have been tested on deployments of the archive where versions of datasets are 

being incrementally added to their corresponding diachronic datasets. The queries use 

dataset versions as variables. The results can be seen in Figure 6 (e) and (f) where 

linearity is still being preserved when new datasets are stored. 

 

Table 4. Characteristics of the experiment queries. 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 

DISTINCT √ √ √ √ √ √ √ √ √ √ √ √ 

Unbound predicates        √ √ √ √ √ 

Filters           √ √ 

Aggregate Functions       √ √ √ √ √ √ 

ORDER BY       √ √ √ √ √ √ 

OPTIONAL            √ 

SELECT √ √ √ √ √ √ √ √ √ √  √ 

CONSTRUCT           √  

Reified data √ √ √ √ √        

De-reified pattern      √ √ √ √ √ √ √ 

Diachronic metadata     √ √   √ √ √ √ 

Unbound named graphs           √ √ 

 



Queries 1-5

100k 1mNumber of record attributes

Retrieval time

100k 1mNumber of record attributes

Query 11

1 16Number of versions

Query 12

Loading timesec sec

sec

sec sec

1 16Number of versions

100k 1mNumber of record attributes

Queries 6-10sec

100k 1mNumber of record attributes

(a) (b)

(c) (d)

(e) (f)

 
Figure 6: Loading times (a), retrieval times (b), select queries without filters and aggregates 

(c), select queries with filters and aggregates (d), select queries with variable datasets (e)-(f). 



6 Related Work 

Managing LOD evolution is a multi-faceted problem that consists in versioning, effi-

cient archiving, change representation and detection, model abstraction and prove-

nance issues, among others. Work has been done in most of these fields individually, 

but few approaches have regarded the issue as a singular problem of many interde-

pendencies, less so in the case of the Data Web, where datasets evolve independently, 

often in non-centralized ways, while citing and using one another. Versioning for 

LOD in the context of complete systems or frameworks has been addressed in 

[3][8][13][14][18][21]. Ontology or schema based approaches have been proposed in 

[17][19][20] with the most prominent example being the PAV ontology [20], a spe-

cialization of the W3C recommended PROV ontology [22] for modelling provenance. 

As far as querying is concerned, work has been done in extending SPARQL with 

temporal capabilities [27][28][29][30][31. In [27] no data model is proposed, instead 

temporal information is used to separate triples in different named graphs. Incorpora-

tion of annotations and provenance on the query side has been approached in [29] 

where triple annotations serve as context and an extension of SPARQL is proposed. 

In [30] an ontology-based approach is followed where temporal reasoning capabilities 

are provided to OWL-2.0 and SPARQL is extended to cater for the temporal dimen-

sion. In [31] a triple store is implemented that incorporates spatiotemporal querying 

by utilizing the SPARQL extensions proposed in [28]. 

In [6] an approach is presented that builds on the Memento [7] framework, an ex-

tension of HTTP to include a traversable and queryable temporal dimension, adapted 

for LOD purposes. Non-changing, time-independent URIs are employed for current 

state identification. Dereferencing past versions of resources is done with temporal 

content negotiation, an HTTP extension. 

In [8], the authors tackle the problem of web versioning by providing extended 

functionality to the web server. They focus on web documents and components 

(HTML, images etc.). They associate versions with 'transaction times' and they per-

form the archiving process only when a web document is requested from the server. 

This creates a distinction between known and assumed past versions, making the 

whole process lossy and not consistent with realistic expectations for LD archiving. 

However, the system is not burdened with constant change tracking and makes a rea-

sonable assumption that versions that have never been accessed are perhaps of no 

significant importance as far as archiving is concerned. 

In [9], the authors tackle the problem of version management for XML documents 

by using deltas to capture differences between sequential versions and use deltas as 

edit scripts to yield sequential versions. The introduced space redundancy is compen-

sated by the query efficiency of storing complete deltas rather than compressed deltas. 

They go on to define change detection as the computation of non-empty deltas and 

they argue that past version retrieval can be achieved by storing all complete deltas as 

well as a number of complete intermediate versions, finding the bounding versions of 

the desired ones and applying their corresponding deltas. Finally, they use a query 

language based on XQuery in order to enable longitudinal querying and they provide 

tag indices for each edit operation for faster delta application. 



In [10], the authors propose a method for archiving scientific data from XML doc-

uments. The approach targets individual elements in the DOM tree of an XML docu-

ment, rather than the whole versions themselves. They use time stamping in order to 

differentiate between the states of a particular element in different time intervals and 

they store each element only once in the archive. The timestamps are pushed down to 

the children of an element in order to reflect the changes at the corresponding level of 

the tree, an approach also followed in [11]. 

In [12] the authors study the change frequency of LOD sources and the implica-

tions on dataset dynamics. They differentiate between the document-centric and the 

entity-centric perspectives of change dynamics, the latter further divided into the enti-

ty-per-document and global entity notions. We partially adopt this distinction in our 

work, as will be described further on. 

SemVersion [13] computes the semantic differences as well as the structural dif-

ferences between versions of the same graph but is limited to RDFS expressiveness. 

DSNotify [14] is an approach to deal with dataset dynamics in distributed LD.  The 

authors identify several levels for the requirements of change dynamics, namely, vo-

cabularies for describing dynamics, vocabularies for representing changes, protocols 

for change propagation and algorithms and applications for change detection. It im-

plements a change detection framework which incorporates these points in a unified 

functionality scheme, having as main motivation the problem of link maintenance. 

When dealing with changes, they target the what, how, when and why dimensions of 

the changes, closely related to the problem of provenance. They differentiate between 

triple and resource level for the what dimension and they argue that the level selection 

depends on the particular use case. How is expressed by the differential operators 

associated with a change (such as add/remove or compound changes) while when is 

expressed by timestamps and version numbers. Finally, the why dimension is usually 

expressed in manual annotations. 

These approaches do not address evolution as a multi-faceted problem. Our ap-

proach differentiates itself by considering versioning, annotating, change management 

and dataset heterogeneity as necessary components of evolution and are thus tackled 

together. Furthermore, most of the work presented in this section address the temporal 

aspect of evolution in datasets, instead we chose to consider temporality as an inher-

ent characteristic of versioning. It is trivial to explicitly create temporal operators for  

DIACHRON QL by evaluating datasets over their temporal metadata and translating 

temporal operators to version-based operators such as AT VERSION or BETWEEN 

VERSIONS. 

 

7 Conclusions 

In this paper, we have discussed the challenges and requirements for the preservation 

and evolution management of datasets published on the Data Web and we have pre-

sented an archiving approach that utilizes a novel conceptual model and query lan-

guage for storing and querying evolving heterogeneous datasets and their metadata. 

The DIACHRON data model and QL have been applied to real world datasets from 



the life-sciences and open government statistical data domains. An archive that em-

ploys these ideas has been implemented and its performance has been tested using 

real versions of datasets from the aforementioned domains over a series of loading, 

retrieval and querying operations. 

The growing availability of open linked datasets has brought forth significant new 

problems related to the distributed nature and decentralized evolution of LOD and has 

posed the need for novel efficient solutions for dealing with these problems. In this 

respect, we have highlighted some possible directions and presented our work that 

tackles evolution and captures several dimensions regarding the management of 

evolving information resources on the Data Web. 
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