
Local Similarity Search on Geolocated Time Series
Using Hybrid Indexing

Georgios Chatzigeorgakidis

Dept. of Inf. & Telecommunications

University of Peloponnese, Greece

chgeorgakidis@uop.gr

Dimitrios Skoutas

IMSI, Athena R.C., Greece

dskoutas@imis.athena-innovation.gr

Kostas Patroumpas

IMSI, Athena R.C., Greece

kpatro@imis.athena-innovation.gr

Themis Palpanas

LIPADE, Paris Descartes University,

France

themis@mi.parisdescartes.fr

Spiros Athanasiou

IMSI, Athena R.C., Greece

spathan@imis.athena-innovation.gr

Spiros Skiadopoulos

Dept. of Inf. & Telecommunications

University of Peloponnese, Greece

spiros@uop.gr

ABSTRACT
Geolocated time series, i.e., time series associated with certain lo-

cations, abound in many modern applications. In this paper, we

consider hybrid queries for retrieving geolocated time series based

on filters that combine spatial distance and time series similarity.

For the latter, unlike existing work, we allow filtering based on

local similarity, which is computed based on subsequences rather

than the entire length of each series, thus allowing the discovery

of more fine-grained trends and patterns. To efficiently support

such queries, we first leverage the state-of-the-art BTSR-tree index,

which utilizes bounds over both the locations and the shapes of

time series to prune the search space. Moreover, we propose opti-

mizations that check at specific timestamps to identify candidate

time series that may exceed the required local similarity threshold.

To further increase pruning power, we introduce the SBTSR-tree

index, an extension to BTSR-tree, which additionally segments the

time series temporally, allowing the construction of tighter bounds.

Our experimental results on several real-world datasets demon-

strate that SBTSR-tree can provide answers much faster for all

examined query types.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems.

KEYWORDS
local similarity, geolocated time series, hybrid indexing

ACM Reference Format:
Georgios Chatzigeorgakidis, Dimitrios Skoutas, Kostas Patroumpas, Themis

Palpanas, Spiros Athanasiou, and Spiros Skiadopoulos. 2019. Local Similarity

Search on Geolocated Time Series Using Hybrid Indexing. In 27th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems (SIGSPATIAL ’19), November 5–8, 2019, Chicago, IL, USA. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3347146.3359349

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6909-1/19/11. . . $15.00

https://doi.org/10.1145/3347146.3359349

1 INTRODUCTION
A time series is a time-ordered sequence of data points. Time series

are ubiquitous in many application domains. They can represent

various types of measurements, such as user check-ins at various

Points of Interest, energy consumption in smart buildings, PM2.5

particle concentration measured by air pollution sensors, etc. Ana-

lyzing and mining time series data is highly important for discov-

ering trends and patterns in such phenomena, and has attracted

extensive research interest over the last years [7, 12, 19].

However, what is usually overlooked is that the phenomena

represented by time series are often also associated with geographic

locations, e.g., time series generated by sensors installed at fixed

positions. In such cases, spatial distance also plays an important

role in the analysis, since discovery of trends and patterns may

depend not only on time series similarity but also on geographic

proximity. Motivated by this observation, in previous work [5, 6] we

introduced the concept of geolocated time series and we proposed

hybrid indexing techniques that efficiently support the retrieval of

time series based on both spatial distance and time series similarity.

In particular, we introduced the BTSR-tree [6], a hybrid index that
first builds an R-tree over the locations of the time series data. It then

enhances each node with appropriate upper- and lower-bounding

time series (MBTS) that enclose the subset of time series represented

by it. Combining MBTSs and MBRs, the query evaluation algorithm

can simultaneously prune the search space based on time series

similarity and spatial distance while traversing the index. To further

increase its pruning power, the BTSR-tree groups together similar

time series within each node to derive tighter bounds.

This existing approach for hybrid search over geolocated time

series using the BTSR-tree supports only global time series similar-

ity, i.e., similarity measured across the entire length of time series.

Specifically, as in other works in this area [2, 3, 7, 10], the distance

between two time series is measured by aggregating the pairwise

Euclidean distance of their respective values across the entire se-

quences. However, in many cases, more fine-grained trends and

patterns may exist, which are missed under this global similarity

measure. For example, consider two time series representing the

hourly energy consumption of two nearby buildings over a week,

and assume that the two buildings exhibit a similar consumption

pattern during working days but a different one in weekends. A

query imposing a similarity threshold over the entire week would

https://doi.org/10.1145/3347146.3359349
https://doi.org/10.1145/3347146.3359349

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA G. Chatzigeorgakidis, et al.

Figure 1: Example hybrid query.

fail to identify these two geolocated time series as similar. However,

it may be useful to discover that there is a period of up to 5 days

during which these two time series are actually similar.

Motivated by this observation, in this work we extend our pre-

vious approach on hybrid queries over geolocated time series to

support local similarity of time series, thus allowing more flexible

and fine-grained queries and analyses. The local similarity score be-
tween two time seriesTi andTj is defined as the maximum number

of consecutive timestamps during which the respective values of

Ti and Tj do not differ by more than a user-specified threshold ϵ .
Notice that, compared to global similarity, this condition is more

relaxed, in the sense that it is applied to subsequences of length

lower than Ti and Tj , but at the same time stricter, in the sense

that the threshold ϵ is required to be satisfied at each individual

timestamp during the selected period rather than on the aggregate

distance over all timestamps.

Combining this local similarity constraint with a filter on spatial
distance leads to a novel set of hybrid queries. Figure 1 shows an

example with a query time series Tq searching over a set of time

series T1, . . . ,T9 for those within radius ρ from its location and

also locally similar to Tq . In particular, with respect to a given ϵ ,
results should also be locally similar toTq for at least 5 consecutive

timestamps. Qualifying results includeT2 with local similarity score

σ2 = 5 (bottom chart), and T7 with σ7 = 7 (top chart).

It turns out that such hybrid queries involving local similarity

can still be evaluated using the BTSR-tree index. We first present

a baseline method employing a sweep-line algorithm to check for

local similarity, and then describe how this can be optimized by

using appropriately placed checkpoints, based on the local similarity

score threshold specified by the query, in order to skip unnecessary

comparisons. Despite the fact that this saves some computations,

the resulting time savings are relatively small, since the number

of index nodes that need to be probed is not essentially reduced.

To overcome this problem, we introduce an improvement to the

BTSR-tree index, which is based on temporally segmenting the time

series bounds within each node and deriving tighter bounds per

segment. Once the time series bounds in each node become more

fine-grained, pruning the search space for local similarity queries

proves much more effective.

Summarizing, our main contributions are as follows:

• We extend our previous work on hybrid queries for geolo-

cated time series to support local time series similarity. We

consider both range and top-k queries, including combined

criteria for spatial distance and local time series distance.

• We present how such queries can be answered efficiently

exploiting the previously introduced BTSR-tree index.

• To achieve greater savings in execution time by further re-

ducing node accesses, we propose an enhanced variant of

BTSR-tree, called SBTSR-tree, which additionally employs

temporal segmentation in each node to derive tighter, more

fine-grained time series bounds.

• We experimentally evaluate our methods using real-world

datasets from different application domains, showing that

BTSR-tree can efficiently handle hybrid queries under local

similarity search, while SBTSR-tree achieves even higher

performance due to the additional temporal segmentation.

The remainder of the paper is structured as follows. Section 2

reviews related work, while Section 3 formally defines the problem.

Section 4 presents how query evaluation under local time series

similarity can be executed using the BTSR-tree. Then, Section 5

presents the enhanced SBTSR-tree. Section 6 reports our experi-

mental results and Section 7 concludes the paper.

2 RELATEDWORK
Similarity search over time series has provided a wide range of algo-

rithmic approaches; a detailed survey with experimental evaluation

is available in [7]. Initially, the focus was mostly on wavelet-based

methods [4] to reduce the dimensionality of time series and gen-

erate an index based on the transformed sequences. In contrast,

state-of-the-art approaches for time series indexing are based on the

Symbolic Aggregate Approximation (SAX) representation [10]. The

first index in this family was iSAX[16], offering multi-resolution

representations for time series. Further extensions like iSAX 2.0 [2],

iSAX2+ [3], ADS+ [20], Coconut [9], DPiSAX [17], and ParIS [13]

provided a wide range of advanced capabilities. These indices sup-

port global similarity search, i.e., the similarity score is computed

over the entire length of the compared time series, as opposed to

local similarity, which allows to consider similar subsequences. The

most recent addition to this SAX -based family is ULISSE [11], which

can answer similarity search queries of varying length. However,
this still differs from our setting, since in ULISSE the goal is to build

an index that supports similarity search for queries of any length

within a given range [ℓmin , ℓmax]. Furthermore, none of the afore-

mentioned approaches supports geolocated time series, and thus

cannot efficiently process hybrid queries combining conditions on

spatial distance and time series similarity.

The problem of subsequence matching over time series is to iden-

tify matches of a (relatively short) query subsequence across one

or more (relatively long) time series. The UCR suite [14] offers

Local Similarity Search on Geolocated Time Series Using Hybrid Indexing SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

a framework comprising various optimizations regarding subse-

quence similarity search. Matrix Profile [18] includes methods for

detecting, for each subsequence of a time series, its nearest neigh-
bor subsequence, by keeping track of Euclidean distances among

candidate pairs. Applying such approaches in our setting is not

straightforward. First, they involve Euclidean or DTW distances,

which are different from our definition of local similarity score,

hence the pruning heuristics do not hold in our case. Second, they

do not consider geolocated time series, thus spatial filtering has to

be carried out independently, which reduces pruning opportunities.

To the best of our knowledge, the only index that supports

searching over geolocated time series is the BTSR-tree [5, 6]. It

is a spatial-first index based on the R-tree that can additionally

compute bounds on similarity of time series instead of a textual

similarity between documents. Apart from an MBR, each node also

stores bounds over the time series indexed in its subtree. Thus, it

offers increased pruning capabilities for range and top-k queries

involving both time series similarity and spatial proximity. In the

current work, we show how BTSR-tree can be used for another

family of hybrid queries involving local similarity of time series.

Furthermore, we introduce a variant structure, called SBTSR-tree,

which constructs tighter bounds over temporally segmented time

series to offer stronger pruning power.

3 LOCAL SIMILARITY SEARCH ON
GEOLOCATED TIME SERIES

Next, we briefly present some background on geolocated time series

and the BTSR-tree index, and then formally define the problem.

3.1 Preliminaries
Geolocated Time Series. A time series is a time-ordered sequence

of values T = {T 1,T 2 . . . ,Tn }, where T i is the value at the i-th
timestamp and n is the length of the series. A geolocated time

series is additionally characterized by a location, denoted by T .loc .
The spatial distance d between two geolocated time series is the

Euclidean distance of their respective locations.

The BTSR-tree Index. In [6], we have introduced the BTSR-tree

index, which is based on the notion of Minimum Bounding Time
Series (MBTS). In a similar manner that an MBR encloses a set of

geometries, an MBTS encloses a set of time series T using a pair of

bounds that fully contain all of them. Figure 2 depicts an example of

two MBTSs for two disjoint sets of time series. Formally, given a set

of time series T , its MBTS consists of an upper bounding time series
B⊓ and a lower bounding time series B⊔, constructed by respectively
selecting the maximum and minimum of values at each timestamp

i ∈ {1, . . . ,n} among all time series in set T as follows:

B⊓ = {max

T ∈T
T 1, . . . ,max

T ∈T
Tn }

B⊔ = {min

T ∈T
T 1, . . . ,min

T ∈T
Tn }

(1)

A BTSR-tree index is initialized as an R-tree [8] built on the

spatial attributes of the given geolocated time series dataset, as

depicted in the example of Figure 3. Besides MBRs, each node is

enhanced to also store MBTSs, shown as colored strips per node

in Figure 3c. This enables efficient pruning of the search space

when evaluating hybrid queries combining time series similarity

Figure 2: MBTS constructed for two sets of time series.

(a) Sample dataset with MBRs over lo-
cations

(b) Spatial-only R-tree index

(c) Hybrid BTSR-tree index

Figure 3: The BTSR-tree index.

with spatial proximity. For each child, a node stores a pre-specified

number of MBTSs. Each MBTS is calculated according to Eq. 1. Con-

struction and maintenance of the BTSR-tree follow the procedures

of the R-tree for data insertion, deletion and node splitting. Objects

(i.e., geolocated time series) are inserted into leaf nodes and any

resulting changes are propagated upwards. Once the nodes have

been populated, the MBTS of each node are calculated bottom-up,

relying on k-means clustering according to their Euclidean distance

in the time series domain. The example in Figure 2 depicts the k = 2

MBTSs (as two bands with a thick outline) obtained for a set of

time series (shown as thin polylines). In a BTSR-tree, each parent

node receives all the MBTSs of its children and computes its own k
MBTSs. The process continues upwards, until reaching the root.

3.2 Problem Definition
We first define the local similarity between time series, and then

present the query variants we consider in this paper.

Definition 1 (Local Time Series Similarity). The local sim-

ilarity score σ between two time series T and T ′ is the maximum
count of consecutive timestamps during which the respective val-
ues of T and T ′ do not differ by more than a given margin ϵ , i.e.,
σ (T ,T ′, ϵ) = |Imax |, where Imax is the longest consecutive time in-
terval I such that ∀i ∈ I , |T i −T ′i | ≤ ϵ .

In this work, our goal is to efficiently support hybrid queries

on geolocated time series that retrieve the results based both on

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA G. Chatzigeorgakidis, et al.

spatial proximity and local similarity. Specifically, we focus on the

following types of queries (hereafter referred to as LS-queries):

• Qr r (Tq , ρ, ϵ,δ): Given a geolocated time series Tq , retrieve
every geolocated time series T such that T is located within

range ρ fromTq , i.e., d(Tq ,T) ≤ ρ and has local similarity to

Tq at least δ , i.e., σ (Tq ,T) ≥ δ .
• Qkr (Tq ,k, ϵ,δ): Given a geolocated time series Tq , retrieve
the spatial k-nearest neighbors to Tq that also have local

similarity to Tq at least δ .
• Qrk (Tq , ρ, ϵ,k): Given a geolocated time series Tq , retrieve
the top-k geolocated time series that have the highest local

similarity to Tq with respect to ϵ and are located within

range ρ from Tq .

Example 1. Figure 1 depicts an example of the Qr r (Tq , ρ, ϵ,δ)
query. Given the geolocated time series Tq as query, we seek the
spatially close ones (i.e., within a circle of radius ρ) that are also
locally similar within margin ϵ for at least δ timestamps. In this
example, despite five geolocated time series being within range, only
T2 and T7 qualify for the final result, since these are the ones that are
also locally similar for at least one time interval of length at least δ .

4 LS-QUERIES USING THE BTSR-TREE
A straightforward approach for answering LS-queries would be

to use a spatial index to first filter by spatial distance and then

perform a sequential scan across each result to filter out those

having local similarity score below the given threshold. This suffers

from generating an unnecessarily large number of intermediate

results which are then discarded. Instead, we propose to process

LS-queries by leveraging the BTSR-tree index [6], which can prune

the search space simultaneously according to both criteria.

While traversing the BTSR-tree, spatial filtering is performed

at each node N by computing the bounding distance mindistsp
between the location of Tq and the MBR of N , as in R-Trees [15].

For time series similarity, we exploit the MBTS stored within each

node. Considering an MBTS at a node N , we calculate its distance

mindist its from Tq at each timestamp i as:

mindist its (Tq ,MBTSN) =

T iq − B

⊓i
N , if T iq > B⊓iN

B⊔iN −T
i
q , if T iq < B⊔iN

0, if B⊓iN ≤ T
i
q ≤ B⊔iN

(2)

where B⊓iN and B⊔iN are the upper and lower values of the MBTS at

timestamp i . By definition of MBTS, no time series indexed under

N can differ from Tq by less thanmindist its at timestamp i . Hence,

only at those timestamps thatmindist its ≤ ϵ , it is possible that a
time series indexed under N is locally similar to Tq . Subsequently,
we can compute a local similarity bound σB :

σB (Tq ,MBTSN , ϵ) =max{|I |;∀i ∈ I ,mindist its (Tq ,MBTSN) ≤ ϵ}.
(3)

that reflects the maximum interval I of consecutive timestamps

where the distance computed by Eq. 2 does not exceed margin ϵ .
This value is an upper bound of the local similarity scores of Tq
with any time series enclosed in this MBTS. Figure 4 shows that

Tq deviates from the given MBTS by no more than ϵ during two

intervals: one consisting of |I1 | = 5 consecutive timestamps and a

Figure 4: Local similarity check against an MBTS.

smaller one with only |I2 | = 2 timestamps (shown as square points).

So, the local similarity bound for this MBTS is σB = 5.

By construction, theMBTSs of a child nodeN ′ get tighter bounds
compared to those of its parent N as we descend the BTSR-tree. It

is easy to verify that

σB (Tq ,MBTSN , ϵ) ≥ σB (Tq ,MBTSN ′ , ϵ) (4)

hence local similarity bounds can only diminish when descending

the index. This bound provides a useful pruning condition during

search with a cutoff threshold δ . Any node where all its MBTSs

have local similarity bound σB below δ can be safely pruned.

Next, we describe a baseline approach that employs a sequential

scan over MBTSs, and then we present an optimization that priori-

tizes selected checkpoints to avoid many point-wise comparisons.

4.1 Sweep Line Approach
We explain how the BTSR-tree can be used, in conjunction with

a simple sweep-line algorithm, to answer each of the three LS-

queries, taking advantage of the two types of bounds,mindistsp
andmindistts , described above.

𝑄𝑟𝑟(𝑇𝑞,𝜌, 𝜖, 𝛿): We traverse the BTSR-tree starting from its root.

At each inner nodeN , we first checkwhethermindistsp (Tq ,MBRN)
≤ ρ. If so, we employ a sweep line across the time axis to compute

the local similarity bound σB (Tq ,MBTSN , ϵ) for every MBTS in-

cluded in N . If all resulting bounds σB are below δ , the subtree

under N is pruned. Otherwise, the search continues at the children.

Upon reaching a leaf node, we fetch the geolocated time series

contained therein, and verify the query constraints against each

one. Each T such that d(Tq .loc,T .loc) ≤ ρ and σ (Tq ,T , ϵ) ≥ δ is

added to the results.

𝑄𝑘𝑟(𝑇𝑞,𝑘, 𝜖, 𝛿): We maintain a priority queue P containing both

inner nodes (sorted by ascendingmindistsp) and geolocated time

series (sorted by ascending spatial distance to Tq). We start by

adding to P the root of BTSR-tree. In each iteration, we retrieve the

top element from P . If it is an inner node, we visit its children to

calculate local similarity bounds σB according to Eq. 3. For any child

N that σB of one of its MBTSs satisfies threshold δ , we search the

subtree of N . Then, we calculate the corresponding spatial distance

(mindistsp for a node N or Euclidean distance for a geolocated time

series T) and insert it back to P . Once we encounter a geolocated
time series T at the top of P , we add it to the results. The process

terminates once k geolocated time series have been obtained.

Local Similarity Search on Geolocated Time Series Using Hybrid Indexing SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

Figure 5: Local time series similarity via checkpoints.

𝑄𝑟𝑘(𝑇𝑞,𝜌, 𝜖,𝑘): This query is evaluated similarly to the previous

one, with two differences. The first difference is that the priority

queue P is now sorted based on local similarity bounds in descend-

ing order, instead of spatial distance bounds in ascending order. The

second is that before inserting an item (node or time series) to P , its
spatial distance (mindistsp or exact) is calculated, and if it is higher

than ρ the item is skipped. The traversal starts again from the root,

and terminates once k time series have been retrieved from the

top of P . These are the top-k results with respect to local similarity

(if another time series T had higher local similarity, it would have

been retrieved from P first), and they are located within range ρ
from Tq (otherwise, they would not have been admitted to P).

4.2 Checkpoint Approach
The drawback of the sweep-line approach is that it needs to perform

a comparison for each individual timestamp to eventually determine

the exact or maximum local similarity of a given time series or

node, respectively. In the following, we explain how we can use

checkpoints along the time axis to avoid this exhaustive search.

These checkpoints prioritize specific timestamps when checking

for candidate matches to eagerly filter out non-qualifying items.

Assume a query with local similarity threshold δ . We can place

checkpoints at every δ timestamps, and only apply the local simi-

larity filter (i.e., |T iq −T
i | ≤ ϵ) at those. If no checkpoint satisfies

the condition, this item can be safely pruned since it cannot have

local similarity to Tq at least δ (as this would require the condition

to be true for at least δ consecutive timestamps, thus crossing at

least one checkpoint).

Figure 5 shows an example with checkpoints placed along the

time axis every δ = 5 timestamps. For clarity, we consider a single

time series T . Assume a checkpoint at timestamp t ′ and a minimal

duration δ starting at timestamp t ′ − δ + 1 for asserting local simi-

larity with queryTq , as shown with the light grey strip in the figure.

This interval cannot have smaller duration, as it would not satisfy

the δ constraint. Thus, the local similarity condition will be true

at checkpoint t ′. Similarly, if such an interval ends at timestamp

t ′ + δ − 1 (darker shaded grey strip in Figure 5), it will be detected

at the checkpoint at t ′. Thus, it suffices to check for local similarity

only at checkpoints, i.e., every δ timestamps. We denote the set of

checkpoints asC , determined at query time. If a checkpoint satisfies

the condition, then we need to scan both forward and backward

from it to determine the actual local similarity score, i.e., to find

the exact extent of the time interval for which the condition holds.

Figure 6 exemplifies the use of checkpoints for comparing Tq to

an MBTS of a node for δ = 5 timestamps. Instead of sequentially

performing 11 comparisons until verifying that local similarity

score σ is at least δ (i.e., we stop the verification at t = 11, once

Figure 6: Local similarity with a MBTS using checkpoints.

σ = 5), we check only around the checkpoints. At the leftmost

checkpoint c1, no local similarity is found (Tq is farther than ϵ
from the MBTS), so we skip directly to checkpoint c2. Since Tq
differs by less than ϵ at c2, we need to compare values backward

and forward, up to the previous and next checkpoint, respectively.

This requires only 6 comparisons instead of 11 to decide that this

node may contain candidates. Next, we describe how probing with

checkpoints is applied during evaluation of LS-queries.

𝑄𝑟𝑟(𝑇𝑞,𝜌, 𝜖, 𝛿): Algorithm 1 outlines the procedure. Initially, we

obtain the children of the root node in a list and place the check-

points every δ timestamps (Lines 1-2). We iterate over each item N
in this list. If N is an inner node, we have to examine whether both

constraints with respect to ρ and δ are met for each of its children.

Verification of MBTS against query Tq will be discussed shortly.

If this is the case, we traverse the sub-tree of each child in the

same manner, by adding it to the list (Lines 6-10), thus descending

the tree. If the examined node is a leaf (Line 11), we iterate over

each contained time series T to check the constraints ρ and δ . If T
qualifies, it is added to the results (Lines 12-14). Note that now the

calculation of local similarity scores for geolocated time series is

based on checkpoints (Line 13), as discussed above.

Verification of MBTS against the local similarity constraints

ϵ,δ is applied using checkpoints (Lines 16-37). This verification

concerns each MBTS in a given node N ′. At each checkpoint c , we
first verify whether itsmindistcts to query Tq is at most ϵ (Line 19).

If so, we first scan backward to inspect whether there are at least δ
consecutive timestamps where Tq deviates by at most ϵ from this

MBTS (Lines 21-28). Similarly, we probe forward from checkpoint

c (Lines 29-36). In either case, once local similarity no longer holds

at a timestamp, probing skips to the next checkpoint. If the check

fails for all checkpoints of all MBTSs, then this node cannot contain

any results (Line 37).

𝑄𝑘𝑟(𝑇𝑞,𝑘, 𝜖, 𝛿): We follow a similar procedure to the one in Sec-

tion 4.1 for queryQkr , employing the same verification process over

MBTSs and time series as in Algorithm 1. Algorithm 2 describes

the procedure. We start by adding the root node to a priority queue

P based on spatial distance (Line 1). After determining the check-

points using the given δ (Line 2), we iteratively retrieve elements

from P (Line 4). Then, three cases may occur:

(i) If this element is a time series (Lines 5-8), it is guaranteed to

be a result, given that P is sorted based on spatial distance

from Tq . Indeed, any subsequent element must be located

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA G. Chatzigeorgakidis, et al.

Algorithm 1: Qr r (Tq , ρ, ϵ,δ)

1 R ← ∅, List ← Root .entr ies
2 C ← determineCheckpoints(δ)
3 while List , ∅ do
4 N ← List .дetN ext ()
5 if N is not leaf then
6 foreach N ′ ∈ N .дetChildren() do
7 if mindistsp (Tq, MBRN ′) ≤ ρ then
8 count ← ∅
9 if V er if yMBTS (Tq, N ′, C, ϵ, δ) then

10 List ← List ∪ {N ′ .дetChildren()}

11 else
12 foreach T ∈ N .дetObjects() do
13 if d (Tq, T) ≤ ρ ∧ σC (Tq, T , ϵ) ≥ δ then
14 R ← R ∪ {T }

15 return R

16 Procedure V er if yMBTS (Tq, N ′, C, ϵ, δ)
17 foreach MBTS ∈ N ′ do
18 foreach c ∈ C do
19 if mindist cts (Tq, MBTS) ≤ ϵ then
20 count + +, c ′ ← c
21 while True do
22 c ′ − −
23 if mindist c

′

ts (Tq, MBTS) ≤ ϵ then
24 count + +
25 if count ≥ δ then
26 return True

27 else
28 break

29 while True do
30 c + +
31 if mindist cts (Tq, MBTS) ≤ ϵ then
32 count + +
33 if count ≥ δ then
34 return True

35 else
36 break

37 return False

farther than the current. When list R obtains the required

number k of results, the search terminates.

(ii) The element is a leaf node (Lines 9-13): In this case, we

obtain each time series T contained in this leaf, and verify

the local similarity score of T against δ . If the condition is

met, we calculate the spatial distance of candidate T from

query Tq and push T into the priority list along with its

spatial distance.

(iii) If the element is an inner node, we iterate over its children

and only push back to the queue the ones whose MBTSs are

verified against ϵ and δ using checkpoints (Lines 13-18).

𝑄𝑟𝑘(𝑇𝑞,𝜌, 𝜖,𝑘): The procedure for this query is listed in Algo-

rithm 3. Notice that for employing checkpoints, we need a local

similarity threshold δ , so as to determine their placement, but this

query does not specify a fixed δ . To be able to obtain one during

search, we now maintain two priority queues: P holds inner nodes

sorted by local similarity bounds (Eq. 3), while R keeps up to k
geolocated time series sorted by local similarity scores (as in Def. 1).

Algorithm 2: Qkr (Tq ,k, ϵ,δ)

1 R ← ∅, P .push(Root)
2 C ← determineCheckpoints(δ)
3 while P is not empty do
4 N ← P .poll ()
5 if N is raw then
6 R ← R ∪ {N }
7 if |R | = k then
8 break

9 else if N is leaf then
10 foreach T ∈ N .дetObjects() do
11 if σC (Tq, T , ϵ) ≥ δ then
12 T .dist ← d (Tq, T)
13 P .push(T , T .dist)

14 else
15 foreach N ′ ∈ N .дetChildren() do
16 if V er if yMBTS (Tq, N ′, C, ϵ, δ) then
17 N ′ .dist ←mindistsp (Tq, MBRN ′)
18 P .push(N ′, N ′ .dist)

19 return R

We initially set δ = 1, so checkpoints are trivially placed at every

timestamp. This implies that computation of local similarity scores

with δ = 1 is equivalent to the sweep line approach. However, δ in-

creases with the detection of qualifying results, hence checkpoints

will progressively get placed more sparsely. The search starts by

adding the BTSR-tree root in P (Line 1). We iteratively poll the top

element from P , and there are two possible cases:

(i) The top element is a leaf node. Then, we iterate over the

contained time series and add the ones that satisfy the spa-

tial condition (ρ) to R, along with their corresponding local

similarity score σ if it exceeds the current value of δ (Lines

7-11). Once R exceeds capacity k , its last element is evicted

to make room for the newly inserted one and δ is updated

according to the local similarity score σk of the k-th element

in R. In this case, the placement of checkpoints is re-adjusted

according to the increased δ value (Lines 12-15).

(ii) The top element is an inner node. In this case, we iterate

over each child N ′ and check ifmindistsp (Tq ,MBR′N) ≤ ρ.
If N ′ qualifies, we calculate the local similarity bound σB
of all its MBTSs using checkpoints. If the maximum among

these boundsmax(σB) ≥ δ , then N ′ is inserted to P with

this maximum score (Lines 16-24).

The process terminates once the top element in P has local simi-

larity less than δ (Lines 5-6). The result is the contents of R.

5 THE SBTSR-TREE INDEX
5.1 Index Structure
The BTSR-tree index uses k-means clustering to cluster the time

series under each node and then stores the MBTSs of those clusters.

However, clustering entire time series typically generates many

overlapping MBTSs, incurring much dead space. This has a neg-

ative impact on the pruning power of the index, especially when

considering local similarities. Figure 7a depicts such a case of six

time series indexed in a node. A k-means clustering with k = 3

will form the depicted MBTSs denoted with shaded colors. As a

Local Similarity Search on Geolocated Time Series Using Hybrid Indexing SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

Algorithm 3: Qrk (Tq ,k, ρ)

1 R ← ∅, P .push(Root)
2 δ ← 1

3 C ← determineCheckpoints(δ)
4 while P is not empty do
5 if P .peekF ir st .σB < δ then
6 break

7 if N is leaf then
8 foreach T ∈ N .дetObjects() do
9 if d (Tq, T) ≤ ρ then

10 if σC (Tq, T , ϵ) ≥ δ then
11 R .push(T , σC (Tq, T , ϵ))

12 if R .size > k then
13 R .pollLast
14 δ ← R .peekLast .σ
15 C ← determineCheckpoints(δ)

16 else
17 foreach N ′ ∈ N .дetChildren() do
18 if mindistsp (Tq, MBRN ′) ≤ ρ then
19 σB ← 0

20 foreach MBTS ∈ N ′ do
21 if σCB (Tq, MBTS, ϵ) ≥ σB then
22 σB ← σCB (Tq, MBTS, ϵ)

23 if σB ≥ δ then
24 P .push(N ′, σB)

25 return R

result, the dark area A represents the overlap betweenmbts .1 and
mbts .2 and actually makes those bounds less tight. Hence, such

MBTSs inflate estimates for local similarity bounds, and thus lead

to unnecessarily descending further down the index.

To reduce the amount of overlap within the MBTSs of nodes, we

introduce an extended version of the BTSR-tree, namedSBTSR-tree.

SBTSR-tree attempts to eliminate as much overlap as possible,

through segmentation of time series. Figure 7b depicts the intu-

ition. If we segment the time series before applying k-means, the

resulting MBTSs for each segment tend to be tighter, eliminating

the excessive overlap A from Figure 7a. The SBTSR-tree is built

similarly to BTSR-tree. The only difference is that the MBTSs of

each node are calculated per segment. In this method, we assume a

pre-defined number s of segments, but segmentation is orthogonal

to our problem and can be carried out by applying existing methods

like [1]. Ultimately,SBTSR-tree allows for more aggressive pruning

when traversing the index.

5.2 Cross-Segment Continuity Via Bit-Vectors
A downside of the segmentation approach is the loss of the MBTS

continuity across time, which results in MBTSs enclosing different

time series in neighboring segments. For example, in Figure 7b,

there are no MBTSs in the right segment containing the same time

series asmbts1.1 andmbts1.2, a fact which hinders the calculation

of local similarity on the segment boundaries (the vertical line). To

overcome this, we introduce a bit-vector V along each MBTS of a

segment, having one bit for each MBTS created. If in the current

segment a bit in vectorV of a given MBTS is set, this indicates that

this MBTS encloses at least one common time series with another

MBTS
′
in the next segment. In the example shown in Figure 7b,

(a) Example of a node’s MBTS.

(b) Segmenting can eliminate whitespace.

Figure 7: Segmenting time series yields tighter MBTS.

V = 110 formbts1.1 indicates common time series withmbts2.1 and
mbts2.2 in the next segment, while V = 001 formbts1.3 signifies
common time series with onlymbts2.3. This way, to calculate local

similarity, we can easily identify all the MBTSs that share common

time series among two successive segments.

To evaluate LS-queries, traversal of the SBTSR-tree index fol-

lows a similar rationale to the procedure in Section 4.2. For each

checkpoint c , we first obtain the segment where it falls in, and we

scan each MBTS leftward and rightward from c , as discussed in

Section 4.2. If we cross the border to another segment, the avail-

able bit-vectors directly identify the MBTS that need be examined

in this neighboring segment. This propagates until the local sim-

ilarity constraints (ϵ and δ) are satisfied. Figure 8 illustrates an

example of a node verification. Let us consider a predetermined

number of three segments and the corresponding MBTS of each

segment for that node. Suppose that there exists a checkpoint c on
the second segment. To verify whether this node satisfies the local

similarity constraints, we start from checkpoint c and we check left-
wards whethermindist its ≤ ϵ for each timestamp. If the currently

examined timestamp falls in the first segment, we fetch the corre-

sponding MBTS and bit-vectors and continue checking whether

mindist its ≤ ϵ in both MBTS (green shaded), as their bit-vectors

both indicate common members with the first one in segment 2. A

similar procedure is followed rightwards, where we only have to

check the first MBTS, according to the bit-vectors.

5.3 Cost Analysis
Next, we analyze the cost of the Qr r query (the other queries have

similar costs). For index traversal, since the index is an augmented

R-tree, the basic cost for searching over an R-tree applies here as

well [8]. However, there is an extra cost which involves two parts.

The first part concerns MBTS verification. Assume a query time

series Tq of length n that is verified against the MBTS of a node N .

For each checkpoint, the algorithm checks for each timestamp t

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA G. Chatzigeorgakidis, et al.

Figure 8: Example of verifying a SBTSR-tree node.

Table 1: Datasets and parameters used in the experiments.

Dataset

Area Number of Length of Default query parameters

(km
2
) locations timeseries ρ ϵ δ k

Flickr Earth 414,967 96 30% 7.5% 20 30

Crime 392,000 362,215 76 30% 7.5% 25 30

Taxi 2,500 417,960 168 30% 10% 20 30

among two segments, whether the mindist at t between Tq and the

node’s MBTS is less than ϵ (see Equation 4). This is repeated at each

neighboring segment for each MBTS whose bit vector is 1, until

threshold δ is satisfied, or rejected for all checkpoints. Thus, this

extra cost isO(c ∗b2 ∗s ∗д) in the worst case, where c is the number

of checkpoints, b is the number of MBTS, s the number of segments,

and д = n/s the number of timestamps between two segments. In

practice, this will typically require much fewer comparisons, since

the node is traversed only when a qualifying interval is found. The

second part of extra cost concerns time series verification. To verify

Tq against T , the algorithm needs to check for each timestamp t
whether the value difference between Tq and T is less than ϵ , and
keep the largest detected one; hence, this extra cost is O(n).

6 EXPERIMENTAL EVALUATION
Next, we report results from a comprehensive evaluation of our

methods against real-world datasets.

6.1 Experimental Setup
6.1.1 Datasets. We use three real-world datasets (Table 1) selected

from different application domains, containing diverse types of

geolocated time series, as detailed below:

UK historical crime data (Crime). Contains time series repre-

senting the temporal variation in the number of crime incidents

reported across England and Wales over 76 months (December

2010– March 2017). We generated time series over a grid with cell

size 200 meters applied on the original data
1
. For each month, we

counted incidents having their location within each cell.

Flickr geotagged photos (Flickr). Contains time series data ex-

tracted from geolocated Flickr images between 2006 and 2013 over

the entire planet
2
. To get meaningful geolocated time series, we

partitioned the space by a uniform grid of 7200 × 3600 cells (each

one spanning 0.05 decimal degrees in each dimension) and counted

the number of photos contained in every cell each month. We ex-

cluded empty cells (e.g., in the oceans). Each time series conveys

1
https://data.police.uk/data/

2
https://code.flickr.net/category/geo/

the visits pattern (in terms of number of photos taken per month)

of that region over this period.

NYC taxi drop-offs (Taxi). Contains time series extracted from

yellow taxi rides in New York City during 2015. The original data
3

provide pick-up and drop-off locations, as well as corresponding

timestamps for each ride. For each month, we generated time series

by applying a uniform spatial grid over the entire city (cell side was

200 meters) and counting all drop-offs therein for each day of the

week at the time granularity of one hour. Thus, we obtained the

number of drop-offs for 24 × 7 time intervals in every cell, which

essentially captures the weekly fluctuation of taxi destinations there.

Without loss of generality, the centroid of each cell is used as the

geolocation of the corresponding time series.

Synthetic. To test scalability, we augmented the Flickr dataset by

slightly moving each location in a random manner and altering

each time series value by a random number between 1 and 10. We

produced three additional synthetic datasets each containing ×2,

×3, ×4 the number of time series from the original dataset.

6.1.2 Index andQuery Parameters. To evaluate the performance

benefits observed in the experiments only based on pruning, we

tuned the index parameters to fixed values. The minimum (m) and

maximum (M) number of entries stored in each node are set to

40 and 100, respectively. For both BTSR-tree and SBTSR-tree, the

number of MBTS set to 10 and for SBTSR-tree, the number of

segments s is also set to 10. The query parameters involve the

spatial distance and local similarity thresholds, i.e., ρ, ϵ , δ and k .
The values of these parameters are set differently for each dataset,

based on their characteristics; default values are shown in Table

1. The value of ρ is set relatively, by setting the covered area as a

percentage of the total area. Similarly, ϵ is set as a percentage of

the maximum difference between the observed values.

6.1.3 Evaluation Setting. Each experiment is performed using a

randomly selected workload of 100 queries for each dataset and we

report the average response time. All indices are held in memory,

while the leafs contain pointers to files with geolocated time series

stored on disk. All methods were developed in Java. Tests were

executed on a server with 4 CPUs, each containing 8 cores clocked

at 2.13GHz, and 256 GB RAM running Debian Linux.

6.2 Query Performance
We compare the average per query execution time for all three

queries using sweep line and checkpoint methods on BTSR-tree

and the checkpoint method on SBTSR-tree.

6.2.1 Qr r (Tq , ρ, ϵ,δ). Figure 9 illustrates the query performance

for varying thresholds ρ and ϵ and the first column of Figure 10 for

varying δ , on all three datasets. It is apparent that the SBTSR-tree

with the checkpoint approach outperforms the rest in all cases. Its

superior pruning power is attributed to the segmentation, which

yields tighter bounds within the nodes and consequently less disk

accesses. The sweep line and checkpoint methods over BTSR-tree

perform similarly in all cases. Both methods access the same nodes,

but the checkpoint approach needs to examine significantly less

3
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

https://data.police.uk/data/
https://code.flickr.net/category/geo/
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

Local Similarity Search on Geolocated Time Series Using Hybrid Indexing SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

(b) Crime (c) Crime

(d) Flickr (e) Flickr

(f) Taxi (g) Taxi

Figure 9: Query Qr r (Tq , ρ, ϵ,δ) for varying ρ and ϵ .

values across time to determine local similarities. However, since

all local similarity calculations take place in-memory, computation

cost does not make a big difference, compared to the less node

accesses required with the SBTSR-tree.

More specifically, for the crime dataset, relaxing ρ (Figure 9b) has

a negative impact on all three methods as more nodes have to be

accessed and pruning depends mostly on the ϵ value. SBTSR-tree

increasingly outperforms the rest as ρ increases, due to its more

aggressive pruning on local similarity. For the case of increasing

ϵ (Figure 9c), the result is the opposite, as this way the parameter

is relaxed and more nodes get accessed. For very large ϵ values,

pruning is solely based on spatial distance and all approaches per-

form similarly. Finally, increasing δ (Figure 10b) also increases the

difference in performance among the three approaches, while it

also reduces the average query response time. This is due to large

numbers of subsequences qualifying for small δ values, resulting

in more node accesses. As δ increases, pruning is more rapidly

improved in the case of SBTSR-tree due to its tighter bounds.

The results are similar but with larger differences for the Flickr
dataset (Figures 9d, 9e and 10f). Intuitively, the less periodicity

in a dataset, the more the benefit from segmentation; if the time

series in the dataset exhibit periodicity, the bounds that will occur

from applying k-means clustering on the whole sequences will

be relatively tighter than otherwise. The Flickr dataset, due to its

nature, is more random than the crime dataset, which justifies

the larger differences. This explanation is also supported by the

results for the taxi dataset, illustrated in Figures 9b, 9c and 10b.

Despite a similar behavior in varying all thresholds, the differences

in average query response time among the different approaches are

smaller than in the crime and Flickr datasets, due to the high daily

periodicity of taxi drop-offs.

Another observation is that the execution cost for queries against

the Taxi dataset is lower than that against Flickr. Although these two

datasets have a similar number of locations, their spatial distribution

and extent differ substantially (Taxi data spans New York city, while

Flickr data spans the entire planet), which may significantly affect

pruning during search. To verify this, we ran a test with a random

Qr r query, ρ = 30% and the default parameters, and we measured

the number of pruned nodes. For the query against the Taxi dataset,

3017 nodes were pruned in the tree as opposed to only 360 nodes

in the tree built for the Flickr data. Since spatial filtering is much

faster with our approach, this explains the difference in execution

cost against these two datasets.

6.2.2 Qkr (Tq ,k, ϵ,δ). Figures 10c, 10g and 10k depict the results

for the Qkr (Tq ,k, ϵ,δ) query for the three datasets. As k increases,

more nodes have to be traversed in order to fetch the additional re-

sults, and the execution time increases for all methods. Nevertheless,

SBTSR-tree still clearly outperforms the other two algorithms.

6.2.3 Qrk (Tq ,k, ρ). Finally, Figures 10d, 10h and 10l depict the

results for the Qrk (Tq ,k, ρ) query. In this case, the performance

deterioration as k increases is less abrupt, especially for the crime

dataset, as usually the top-k results are spatially closely located and

are retrieved quickly. Again, the largest and smallest differences

are spotted on the Flickr and taxi datasets, respectively.

6.3 Scalability
We performed a scalability evaluation for all three queries using

the Flickr-based synthetic datasets, again measuring the average

query response time for the same query workload. The results for

increasing dataset size (up to four times) are depicted in Figure 10. In

all cases, theSBTSR-tree-based approach scales better, especially in

the top-k queries (Figures 10i and 10m), where the larger difference

observed in Figures 10g and 10h is further augmented.

7 CONCLUSIONS
We have studied three variants of hybrid queries on geolocated

time series, involving both range and top-k search, and combining

spatial distance with local time series similarity. The latter allows

to measure similarity of time series over subsequences instead of

their entire length, and thus enables the identification of more fine-

grained trends and patterns. The queries are evaluated by hybrid

index structures, in order to allow for simultaneous pruning by

both criteria. We first discuss query evaluation using the previ-

ously proposed BTSR-tree, and then we further extend it to derive

the SBTSR-tree which exhibits even better performance, by us-

ing temporal segmentation of time series to derive tighter bounds.

Our evaluation against several real-world datasets has shown that

SBTSR-tree can compute results much faster for all query variants.

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA G. Chatzigeorgakidis, et al.

(b) Crime (Qr r) (c) Crime (Qkr) (d) Crime (Qrk) (e) Qr r

(f) Flickr (Qr r) (g) Flickr (Qkr) (h) Flickr (Qrk) (i) Qkr

(j) Taxi (Qr r) (k) Taxi (Qkr) (l) Taxi (Qrk) (m) Qrk

Figure 10: Per column: Qr r (Tq , ρ, ϵ,δ) for varying δ – Qkr (Tq ,k, ϵ,δ) for varying k – Qrk (Tq ,k, ρ) for varying k – Scalability.

Acknowledgements. This work was partially funded by the EU

H2020 projects SLIPO (731581) and SmartDataLake (825041), and

the NSRF 2014-2020 project HELIX (5002781).

REFERENCES
[1] Ella Bingham, Aristides Gionis, Niina Haiminen, Heli Hiisilä, Heikki Mannila,

and Evimaria Terzi. 2006. Segmentation and dimensionality reduction. In SIAM.

372–383.

[2] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn J. Keogh. 2010.

iSAX 2.0: Indexing and Mining One Billion Time Series. In ICDM. 58–67.

[3] Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthanmanon, and

Eamonn J. Keogh. 2014. Beyond one billion time series: indexing and mining

very large time series collections with i SAX2+. Knowl. Inf. Syst. 39, 1 (2014),

123–151.

[4] Kin-pong Chan and Ada Wai-Chee Fu. 1999. Efficient Time Series Matching by

Wavelets. In ICDE. 126–133.
[5] Georgios Chatzigeorgakidis, Kostas Patroumpas, Dimitrios Skoutas, Spiros

Athanasiou, and Spiros Skiadopoulos. 2018. Scalable hybrid similarity join over

geolocated time series. In SIGSPATIAL. 119–128.
[6] Georgios Chatzigeorgakidis, Dimitrios Skoutas, Kostas Patroumpas, Spiros

Athanasiou, and Spiros Skiadopoulos. 2017. Indexing Geolocated Time Series

Data. In SIGSPATIAL. 19:1–19:10.
[7] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.

2018. The Lernaean Hydra of Data Series Similarity Search: An Experimental

Evaluation of the State of the Art. PVLDB 12, 2 (2018), 112–127.

[8] Antonin Guttman. 1984. R-trees: A Dynamic Index Structure for Spatial Searching.

In SIGMOD. 47–57.
[9] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas.

2018. Coconut: A Scalable Bottom-Up Approach for Building Data Series Indexes.

PVLDB 11, 6 (2018), 677–690.

[10] Jessica Lin, Eamonn J. Keogh, Li Wei, and Stefano Lonardi. 2007. Experiencing

SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15,
2 (2007), 107–144.

[11] Michele Linardi and Themis Palpanas. 2018. Scalable, variable-length similarity

search in data series: The ULISSE approach. PVLDB 11, 13 (2018), 2236–2248.

[12] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh. 2018.

VALMOD: A Suite for Easy and Exact Detection of Variable Length Motifs in

Data Series. In SIGMOD. 1757–1760.
[13] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2018. ParIS: The Next

Destination for Fast Data Series Indexing and Query Answering. In IEEE BigData.
[14] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,

BrandonWestover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2012. Searching

and mining trillions of time series subsequences under dynamic time warping.

In SIGKDD. 262–270.
[15] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent. 1995. Nearest Neighbor

Queries. In SIGMOD. 71–79.
[16] Jin Shieh and Eamonn J. Keogh. 2008. iSAX: indexing and mining terabyte sized

time series. In SIGKDD. 623–631.
[17] Djamel-Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas.

2018. Massively Distributed Time Series Indexing and Querying. TKDE (to
appear) (2018).

[18] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,

Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh.

2016. Matrix profile I: all pairs similarity joins for time series: a unifying view

that includes motifs, discords and shapelets. In ICDM.

[19] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,

Hoang Anh Dau, Zachary Zimmerman, Diego Furtado Silva, Abdullah Mueen,

and Eamonn J. Keogh. 2018. Time series joins, motifs, discords and shapelets:

a unifying view that exploits the matrix profile. Data Min. Knowl. Discov. 32, 1
(2018), 83–123.

[20] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing for

interactive exploration of big data series. In SIGMOD. 1555–1566.

	Abstract
	1 Introduction
	2 Related Work
	3 Local Similarity Search on Geolocated Time Series
	3.1 Preliminaries
	3.2 Problem Definition

	4 LS-Queries Using the BTSR-tree
	4.1 Sweep Line Approach
	4.2 Checkpoint Approach

	5 The IIndex
	5.1 Index Structure
	5.2 Cross-Segment Continuity Via Bit-Vectors
	5.3 Cost Analysis

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Query Performance
	6.3 Scalability

	7 Conclusions
	References

