Simplifying Impact Prediction for Scientific Articles Full text

Thanasis Vergoulis, Ilias Kanellos, Giorgos Giannopoulos, Theodore Dalamagas
EDBT/ICDT Workshops 2021
Abstract. Estimating the expected impact of an article is valuable for various applications (e.g., article/cooperator recommendation). Most existing approaches attempt to predict the exact number of citations each article will receive in the near future, however this is a difficult regression analysis problem. Moreover, most approaches rely on the existence of rich metadata for each article, a requirement that cannot be adequately fulfilled for a large number of them. In this work, we take advantage of the fact that solving a simpler machine learning problem, that of classifying articles based on their expected impact, is adequate for many real world applications and we propose a simplified model that can be trained using minimal article metadata. Finally, we examine various configurations of this model and evaluate their effectiveness in solving the aforementioned classification problem.